Introducing Logistic Regression

November 22, 2019

November 22, 2019

1 / 23

・ロト ・回ト ・ヨト

ヨトーヨ

DQC

- So far, all of our outcome variables have been numeric.
- Values of \hat{y} are continuous numeric.
- What happens when we have categorical outcomes?
- Enter logistic regression.

A D > A D >

三 三 つくつ

(Multiple) linear regression and logistic regression are both a type of generalized linear model (GLM).

- Logistic regression will allow us to model binary response variables.
- That is, we will be able to model categorical variables with two levels.

• □ ▶ • □ ▶ • □ ▶ •

3.1 3.

San

We can think of GLMs as a two-stage approach:

- Model the response variable using some probability distribution.
- Model the distribution's parameter(s) using a collection of predictors (as in multiple regression).

Sac

《日》 《圖》 《日》 《日》 [] []

We've already been doing this!

For a continuous outcome,

- The response variable is assumed to follow a normal distribution.
- **2** The mean of this normal distribution is $\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$.

Consider data from a study to examine the effect of race and sex on job application callback rates.

- Fake resumes were sent to job ads in Boston and Chicago.
- Researchers wanted to see which would elicit callbacks.
- Experience and education were randomly generated.
- Finally, names were randomly generated and added to the resumes.
 - Names were generated such that hiring managers would be likely to assume both race and gender.

San

<ロト (四) (三) (三) (三) (三)

The response variable of interest is

$$\texttt{callback} = \begin{cases} 1 & \text{if received callback} \\ 0 & \text{otherwise} \end{cases}$$

DQC

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 -

The variables in this dataset are

callback	yes or no
job_city	Boston or Chicago
college_degree	yes or no
years_experience	Numeric, number of years experience
honors	Resume lists some type of honors, yes or no
military	yes or no
$email_address$	Listed, yes or no
race	Black or white (implied by name)
sex	implied by name

Race and sex are protected classes in the US, meaning that employers are not legally allowed to make hiring decisions based on these factors.

This study...

- has random assignment.
- is a true experiment.

Therefore we may infer causation between (statistically significant) variables and the callback rate.

Sac

<ロト (四) (三) (三) (三) (三)

With logistic regression,

- The outcome Y_i takes values 1 or 0 with some probability.
 - $P(Y_i = 1) = p_i$
 - $P(Y_i = 0) = 1 p_i$
- The subscript i refers to the ith observation (in this case the ith resume).
- We will model the probability p, which takes values p_1, \ldots, p_n .

We want to relate the probability of a callback for each resume, p, to the predictors x_1, \ldots, x_k .

This will look a lot like multiple regression!

transformation(p) = $\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon$

Why do we transform p?

- \bullet We want the range of possibilities for the outcome to match the range of p
 - p = P(Y = 1) is between 0 and 1!
- Without a transformation, $\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$ could take values outside of 0 to 1.

A common transformation for p is the **logit transformation**:

$$logit(p) = log\left(\frac{p}{1-p}\right)$$

Then the model looks like

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon$$

Section 9.5

November 22, 2019

14 / 23

999

・ロト ・四ト ・ヨト ・ヨト - ヨー

Example: Transforming the Resume Data

We start with the model that includes only honors.

$$\log\left(\frac{p}{1-p}\right) = -2.4998 + 0.8668 \times \texttt{honors}$$

For a resume with no honors listed, what is the probability of a callback?

As with multiple regression, we'll fit all of these models using a computer (the computer will do the logit transformation for you, too!), but we do need to know how to interpret the results.

To make probability predictions using a logistic regression, use

$$p = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$

Section 9.5

November 22, 2019

The summary for the full model is

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-2.6632	0.1820	-14.64	< 0.0001
job_city:Chicago	-0.4403	0.1142	-3.85	0.0001
$college_degree$	-0.0666	0.1211	-0.55	0.5821
years_experience	0.0200	0.0102	1.96	0.0503
honors	0.7694	0.1858	4.14	< 0.0001
military	-0.3422	0.2157	-1.59	0.1127
$email_address$	0.2183	0.1133	1.93	0.0541
race:white	0.4424	0.1080	4.10	< 0.0001
sex:male	-0.1818	0.1376	-1.32	0.1863

November 22, 2019

<□▶ <□▶ < 三▶ < 三▶ < 三▶ E のQ() 19 / 23

- The approach is similar to using R_{adj}^2 in multiple regression.
- Use a statistic called Akaike information criterion (AIC).
 - This is similar to R_{adj}^2 in that it balances model fit and number of parameters.
- We will prefer models with a *lower* AIC value.

Sar

・ロト ・回ト ・ヨト ・

Running all possible seven-variable models for the resume data, the model with the lowest AIC has college_degree removed.

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-2.7162	0.1551	-17.61	< 0.0001
job_city:Chicago	-0.4364	0.1141	-3.83	0.0001
years_experience	0.0206	0.0102	2.02	0.0430
honors	0.7634	0.1852	4.12	< 0.0001
military	-0.3443	0.2157	-1.60	0.1105
$email_address$	0.2221	0.1130	1.97	0.0494
race:white	0.4429	0.1080	4.10	< 0.0001
sex:male	-0.1959	0.1352	-1.45	0.1473

Notice that the coefficients barely changed!

3

5900

<ロト <回ト < 回ト < 三ト

- Sex is not statistically significant.
- However, race is associated with a near-zero p-value.
 - The coefficient corresponds to white.
 - To interpret this coefficient, we would say that the *probability of* callback is higher for white.
 - These data provide very strong evidence for racial bias in job application callbacks.

- 2

Sar

(日) (四) (日) (日)

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-2.7162	0.1551	-17.61	< 0.0001
job_city:Chicago	-0.4364	0.1141	-3.83	0.0001
years_experience	0.0206	0.0102	2.02	0.0430
honors	0.7634	0.1852	4.12	< 0.0001
military	-0.3443	0.2157	-1.60	0.1105
$email_address$	0.2221	0.1130	1.97	0.0494
race:white	0.4429	0.1080	4.10	< 0.0001
sex:male	-0.1959	0.1352	-1.45	0.1473

Write the logistic regression model for these data.

November 22, 2019

臣

990

(日) (四) (日) (日) (日)