Interactions and Nonlinear Trends

November 18, 2019

November 18, 2019

1 / 21

DQC

(日) (四) (注) (注) (注) (三)

Consider an experiment that examines the impact of Vitamin C from two sources on the growth of teeth in Guinea pigs.

- Each Guinea pig was randomly assigned to one of two possible levels of each variable.
 - supp indicates a supplement type for Vitamin C, with levels VC for ascorbic acid and OJ for orange juice.
 - dose indicates the amount of Vitamin C, which takes values of either 1 or 2 mg.

The outcome is the tooth length of the Guinea pigs.

San

<ロト (四) (三) (三) (三) (三)

- We want to build a regression model for these data.
- We start with the following model:

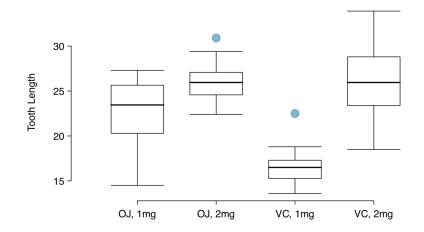
$$Y = \beta_0 + \beta_1 x_{supp} + \beta_2 x_{dose} + \epsilon$$

The model output is

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	14.8325	2.0319	7.30	0.0000
suppVC	-2.9250	1.2253	-2.39	0.0222
dose	6.3650	1.2253	5.19	0.0000

Write the regression model for these data.

Example



Predict an outcome for each possible combination of variables. How do these means compare to the boxplots?

Web Supplement: Interaction Effects

November 18, 2019

5 / 21

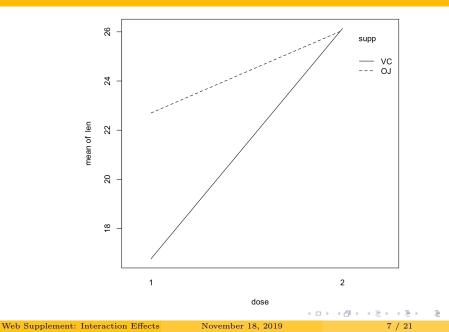
For this model,

- $R^2 = 0.5553$
- $\mathbf{R}^2_{adj} = 0.5183$

When we built our model, we assumed that the effects of the supplement and dose are independent.

- What if this isn't the case?
- Can we improve the model?

Interactions



- There appears to be some interaction between **dose** and **supp**
- Recall: an **interaction** means that the effect of one may partially depend on the value of the other.
- We can model this effect by including an additional term:

$$Y = \beta_0 + \beta_1 x_{supp} + \beta_2 x_{dose} + \beta_3 x_{dose} x_{supp} + \epsilon$$

Sar

Consider a few rows of the tooth growth data:

len	supp	dose
16.5	VC	1
16.5	VC	1
25.5	\mathbf{VC}	2
19.7	OJ	1
23.3	OJ	1
26.4	OJ	2

What does this look like with the interaction term?

Web Supplement: Interaction Effects

November 18, 2019

< □ ▷ < □ ▷ < 三 ▷ < 三 ▷ < 三 ▷ < 三 ○ へ ○ 9 / 21

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	19.3400	2.5419	7.61	0.0000
suppVC	-11.9400	3.5948	-3.32	0.0021
dose	3.3600	1.6076	2.09	0.0437
suppVC:dose	6.0100	2.2735	2.64	0.0121

 R^2 : 0.7296, R^2_{adj} : 0.7151

Write out the regression model. Calculate the predicted value for each group.

- One of our regression assumptions is of linear relationships.
- What happens when this is violated?
- We may be able to use a **transformation** to "fix" things.

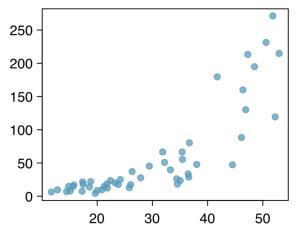
These techniques may be useful for violations of

- linearity.
- normality of residuals.
- constant variability of residuals.

DQC

We will consider two types of transformation:

- transforming the response variable.
- **2** using polynomial terms in multiple regression.

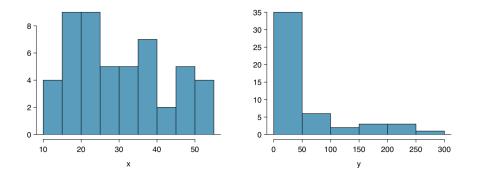


- The trend may be nonlinear.
- The variability increases with x.

14 / 21

æ

Transformations



- x looks pretty reasonable.
- y is extremely right-skewed.
- So we probably want to transform y.

ъ

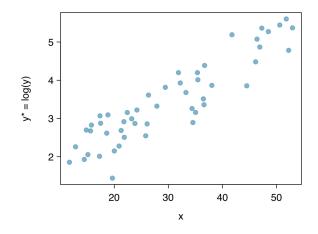
DQC

One of the more common transformations is the **natural log** (ln).

 $y^* = \log y$

Note: In statistics, "log" almost always implies the natural log.

Transformations on the Response



Now, the relationship looks linear and the variability looks pretty constant.

Web Supplement: Nonlinear Trends

November 18, 2019

17 / 21

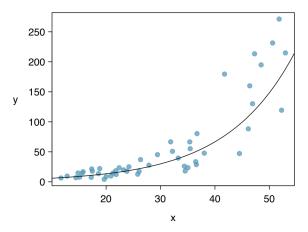
The model for these transformed data is

 $\hat{y}^* = 1.03 + 0.08x$

To get predictions for y, we need to **back-transform** the data by solving for y.

Back transform the data and predict the value of y when x = 31.

Back-Transforming



The back-transformed equation overlaid on the original data.

19 / 21

æ

For a model that used $\log y$ and fits the data well, we say

• y tends to grow (or decay) **exponentially** relative to x.

(日) (종) (종) (종)

E nac

- In theory, there are infinite possible transformations.
- If we keep trying different transformations until one "works", we haven't effectively modeled our data.
- In actuality, this is a form of data fishing!
- This is one reason to think carefully and stick to mostly standard transformations.

- 2

San

イロト イヨト イヨト