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Consider

Consider an experiment that examines the impact of Vitamin C from
two sources on the growth of teeth in Guinea pigs.

Each Guinea pig was randomly assigned to one of two possible
levels of each variable.

supp indicates a supplement type for Vitamin C, with levels VC for
ascorbic acid and OJ for orange juice.
dose indicates the amount of Vitamin C, which takes values of
either 1 or 2 mg.

The outcome is the tooth length of the Guinea pigs.
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Example

We want to build a regression model for these data.

We start with the following model:

Y = β0 + β1xsupp + β2xdose + ε
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Example

The model output is

Estimate Std. Error t value Pr(> |t|)
(Intercept) 14.8325 2.0319 7.30 0.0000

suppVC -2.9250 1.2253 -2.39 0.0222
dose 6.3650 1.2253 5.19 0.0000

Write the regression model for these data.
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Example

Predict an outcome for each possible combination of variables. How do
these means compare to the boxplots?
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Example

For this model,

R2 = 0.5553

R2
adj = 0.5183

When we built our model, we assumed that the effects of the
supplement and dose are independent.

What if this isn’t the case?

Can we improve the model?
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Interactions
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Interactions

There appears to be some interaction between dose and supp

Recall: an interaction means that the effect of one may partially
depend on the value of the other.

We can model this effect by including an additional term:

Y = β0 + β1xsupp + β2xdose + β3xdosexsupp + ε
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Interactions

Consider a few rows of the tooth growth data:

len supp dose

16.5 VC 1
16.5 VC 1
25.5 VC 2
19.7 OJ 1
23.3 OJ 1
26.4 OJ 2

What does this look like with the interaction term?
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Example

Estimate Std. Error t value Pr(> |t|)
(Intercept) 19.3400 2.5419 7.61 0.0000

suppVC -11.9400 3.5948 -3.32 0.0021
dose 3.3600 1.6076 2.09 0.0437

suppVC:dose 6.0100 2.2735 2.64 0.0121

R2: 0.7296, R2
adj : 0.7151

Write out the regression model. Calculate the predicted value for each
group.
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Nonlinear Trends

One of our regression assumptions is of linear relationships.

What happens when this is violated?

We may be able to use a transformation to ”fix” things.
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Transforming the Response Variable

These techniques may be useful for violations of

linearity.

normality of residuals.

constant variability of residuals.
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Transformations for Nonlinear Trends

We will consider two types of transformation:

1 transforming the response variable.

2 using polynomial terms in multiple regression.
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Transformations

The trend may be nonlinear.

The variability increases with x.
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Transformations

x looks pretty reasonable.

y is extremely right-skewed.

So we probably want to transform y.
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Transformations on the Response

One of the more common transformations is the natural log (ln).

y∗ = log y

Note: In statistics, ”log” almost always implies the natural log.
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Transformations on the Response

Now, the relationship looks linear and the variability looks pretty
constant.
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Back-Transforming

The model for these transformed data is

ŷ∗ = 1.03 + 0.08x

To get predictions for y, we need to back-transform the data by
solving for y.

Back transform the data and predict the value of y when x = 31.
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Back-Transforming

The back-transformed equation overlaid on the original data.
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Interpreting Coefficients

For a model that used log y and fits the data well, we say

y tends to grow (or decay) exponentially relative to x.
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A Word of Caution

In theory, there are infinite possible transformations.

If we keep trying different transformations until one ”works”, we
haven’t effectively modeled our data.

In actuality, this is a form of data fishing!

This is one reason to think carefully and stick to mostly standard
transformations.
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