Model Selection and Assumptions

November 15, 2019

Forward Selection

- Forward selection is essentially backward selection in reverse.
- We start with the model with no variables.
- We use $R_{a d j}^{2}$ to add one variable at a time.
- We continue to do this until we cannot improve $R_{a d j}^{2}$ any further.

Example: Forward Selection

We start with the intercept-only model and (one at a time) examine the model using

Add \ldots	income_ver	debt_to_income	credit_util	bankruptcy
	$R_{a d j}^{2}=0.05926$	$R_{a d j}^{2}=0.01946$	$R_{a d j}^{2}=0.06452$	$R_{a d j}^{2}=0.00222$
	term	issued		
	$R_{a d j}^{2}=0.12855$	$R_{a d j}^{2}=-¡ 0.00018$	$R_{a d j}^{2}=0.01711$	

to predict interest rate.

- $R_{a d j}^{2}=0$ for the intercept-only model.

Example: Forward Selection

- We see the biggest improvement with term.
- We then check all of the models with term and each other variable.
- Our new baseline $R_{a d j}^{2}$ is 0.12855 .

Add term and ... income_ver debt_to_income credit_util

$$
\begin{array}{lll}
R_{a d j}^{2}=0.16851 & R_{a d j}^{2}=0.14368 & R_{a d j}^{2}=0.20046 \\
\text { bankruptcy } & \text { issued } & \text { credit_checks } \\
R_{a d j}^{2}=0.13070 & R_{a d j}^{2}=0.12840 & R_{a d j}^{2}=0.14294
\end{array}
$$

Example: Forward Selection

Moving forward with term and credit_util (new baseline $\left.R_{a d j}^{2}=0.20046\right)$

Add term, credit_util, and ... income_ver debt_to_income

$$
R_{a d j}^{2}=0.24183 \quad R_{a d j}^{2}=0.20810
$$

bankruptcy issued credit_checks

$$
R_{a d j}^{2}=0.20169 \quad R_{a d j}^{2}=0.20031 \quad R_{a d j}^{2}=0.21629
$$

So we will include income_var.
Continuing on, we include debt_to_income, then credit_checks, and bankruptcy.

Example: Forward Selection

At this point, we have only income left.

- The current $R_{a d j}^{2}$ is 0.25854 .
- Including income, we find $R_{a d j}^{2}=0.25843$.

We conclude with the same model we found in the backward elimination.

Model Selection: the P-Value Approach

The p-value may be used instead of $R_{a d j}^{2}$. For backward elimination

- Build the full model and find the predictor with the largest p-value.
- If the p-value $>\alpha$, remove it and refit the model.
- Repeat with the smaller model.
- When all p-values $<\alpha$, STOP. This is your final model.

Note: it is still important that we remove only one variable at a time!

Model Selection: the P-Value Approach

The p-value may be used instead of $R_{a d j}^{2}$. For forward selection

- Fit a model for each possible predictor and identify the model with the smallest p-value.
- If that p -value $<\alpha$, add that predictor to the model.
- Repeat, building models with the chosen predictor and each additional potential predictor.
- When none of the remaining predictors have p-value $<\alpha$, STOP. This is the final model.
Note: it is still important that we add only one variable at a time!

Model Selection: $R_{a d j}^{2}$ or P-Value?

- When the primary goal is prediction accuracy, use $R_{a d j}^{2}$.
- This is typically the case in machine learning applications.
- When the primary goal is understanding statistical significance, use p-values.

Model Selection: Backward or Forward?

- Both are perfectly valid approaches.
- Statistical software like R can automate either process.
- If you have a lot of predictor variables, forward selection may make things easier.
- Note: we can't fit models where $k \geq n$.
- In this setting, forward selection may help us choose which variables to include.
- If you have fewer predictor variables, backward elimination may be easier to use.

Example: Backward Selection Using P-Values

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	1.9251	0.2102	9.16	<0.0001
income_ver: source_only	0.9750	0.0991	9.83	<0.0001
income_ver: verified	2.5374	0.1172	21.65	<0.0001
debt_to_income	0.0211	0.0029	7.18	<0.0001
credit_util	4.8959	0.1619	30.24	<0.0001
bankruptcy	0.3864	0.1324	2.92	0.0035
term	0.1537	0.0039	38.96	<0.0001
issued: Jan2018	0.0276	0.1081	0.26	0.7981
issued: Mar2018	-0.0397	0.1065	-0.37	0.7093
credit_checks	0.2282	0.0182	12.51	<0.0001

Example: Backward Selection Using P-Values

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	1.9213	0.1982	9.69	<0.0001
income_ver: source_only	0.9740	0.0991	9.83	<0.0001
income_ver: verified	2.5355	0.1172	21.64	<0.0001
debt_to_income	0.0211	0.0029	7.19	<0.0001
credit_util	4.8958	0.1619	30.25	<0.0001
bankruptcy	0.3869	0.1324	2.92	0.0035
term	0.1537	0.0039	38.97	<0.0001
credit_checks	0.2283	0.0182	12.51	<0.0001

Model Conditions

Multiple regression models

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}+\epsilon
$$

depend on the following conditions:
(1) Nearly normal residuals.
(2) Constant variability of residuals.
(3) Independence.
(9) Each variable linearly related to the outcome.

Diagnostic Plots

We will consider our final model for the loan data:

$$
\begin{aligned}
\text { râte }= & 1.921+0.974 \times \text { income_ver } \\
& +0.021 \times \text { debt_income }+4.896 \times \text { credit_util }+0.387 \times \text { bankruptcy } \\
& +0.154 \times \text { term }+0.228 \times \text { credit_check }
\end{aligned}
$$

and will examine it for any issues with the model conditions.

Check for Normality

As with simple linear regression, there are two ways to check for normality:
(1) Histograms
(2) Q-Q Plots

Check for Normality: Histogram

Check for Normality: Q-Q Plots

The Normality Assumption

- Since this is such a large dataset (10000 observations), we can relax this assumption some.
- However, our prediction intervals may not be valid if we do.

Constant Variance

Residuals vs Fitted

Fitted values

Other Useful Diagnostic Plots

- For data taken in sequence, we might plot residuals in order of data collection.
- This can help identify correlation between cases.
- If we find connections, we may want to look into methods for time series.
- We may also want to look at the residuals plotted against each predictor variable.
- Look for change in variability and patterns in the data.

Residuals Versus Specific Predictor Variables

Residuals Versus Specific Predictor Variables

Residuals Versus Specific Predictor Variables

Loan Term, in Months

Now What?

- If we choose this as our final model, we must report the observed abnormalities!
- The second option is to look for ways to continue to improve the model.

Transformations

One way to improve model fit is to transform one or more predictor variables.

- If a variable has a lot of skew and large values have a lot of leverage, we might try
- Log transformation $(\log x)$
- Square root transformation (\sqrt{x})
- Inverse transformation $(1 / x)$

There are many valid transformations!

Example: Debt to Income

- We want to deal with this extreme skew.
- There are some cases where debt_to_income $=0$.
- This will make log and inverse transformations infeasible.

Example: Debt to Income

First we will try a square root transformation

- We create a new variable, sqrt_debt_to_income

$$
\text { sqrt_debt_to_income }=\sqrt{\text { debt_to_income }}
$$

We then refit the model with sqrt_debt_to_income.

Example: Debt to Income

We will also try a truncation at 50 .

- We create a new variable, debt_to_income_50.
- Any values > 50 are shrunk to 50 .

We then refit the model with debt_to_income_50.

Example: Debt to Income

The truncation does a good job fixing the constant variance assumption for this variable.

Example: Debt to Income

- With the debt to income issue fixed, we should recheck our model assumptions.
- We will find the same issues with the other variables.
- If we decide that this is our final model, we would need to acknowledge these issues.

Example: Debt to Income

The new model is

$$
\begin{aligned}
\text { râte }= & 1.562+1.002 \times \text { income_ver }_{\text {source }}+2.436 \times \text { income_ver }_{\text {verified }} \\
& +0.048 \times \text { debt_income }+4.698 \times \text { credit_util }+0.394 \times \text { bankruptcy } \\
& +0.153 \times \text { term }+0.223 \times \text { credit_check }
\end{aligned}
$$

Notice that the coefficient for debt_income doubled when we dealt with those high leverage outliers.

Reporting Results

- While we may report models that with conditions that are slightly violated,
- ...as long as we acknowledge the violations in our reporting.
- we shouldn't report results when conditions are grossly violated.
- If familiar methods won't cut it, reach out to an expert.

