Model Selection and Assumptions

November 15, 2019

November 15, 2019

1 / 32

- < ≣ >

A D > A D >

ヨトーヨ

- Forward selection is essentially backward selection in reverse.
- We start with the model with no variables.
- We use R_{adi}^2 to add one variable at a time.
- We continue to do this until we cannot improve R_{adi}^2 any further.

We start with the intercept-only model and (one at a time) examine the model using

to predict interest rate.

• $R_{adj}^2 = 0$ for the intercept-only model.

- We see the biggest improvement with term.
- We then check all of the models with term and each other variable.
- Our new baseline R_{adj}^2 is 0.12855.

Moving forward with term and credit_util (new baseline $R_{adj}^2 = 0.20046$)

Add term, credit_util, and ... income_ver debt_to_income $R_{adj}^2 = 0.24183 \quad R_{adj}^2 = 0.20810$ bankruptcy issued credit_checks $R_{adj}^2 = 0.20169 \quad R_{adj}^2 = 0.20031 \quad R_{adj}^2 = 0.21629$

So we will include income_var.

Continuing on, we include debt_to_income, then credit_checks, and bankruptcy.

At this point, we have only income left.

- The current R_{adi}^2 is 0.25854.
- Including income, we find $R_{adj}^2 = 0.25843$.

We conclude with the same model we found in the backward elimination.

The p-value may be used instead of R_{adj}^2 . For backward elimination

- Build the full model and find the predictor with the largest p-value.
- If the p-value > α , remove it and refit the model.
- Repeat with the smaller model.
- When all p-values $< \alpha$, STOP. This is your final model.

Note: it is still important that we remove only one variable at a time!

The p-value may be used instead of R_{adj}^2 . For forward selection

- Fit a model for each possible predictor and identify the model with the smallest p-value.
- If that p-value< α , add that predictor to the model.
- Repeat, building models with the chosen predictor and each additional potential predictor.
- When none of the remaining predictors have p-value $< \alpha$, STOP. This is the final model.

Note: it is still important that we add only one variable at a time!

Sar

- When the primary goal is prediction accuracy, use R_{adj}^2 .
 - This is typically the case in machine learning applications.
- When the primary goal is understanding statistical significance, use p-values.

- Both are perfectly valid approaches.
- Statistical software like R can automate either process.
- If you have a lot of predictor variables, forward selection may make things easier.
 - Note: we can't fit models where $k \ge n$.
 - In this setting, forward selection may help us choose which variables to include.
- If you have fewer predictor variables, backward elimination may be easier to use.

3

Sar

イロト イヨト イヨト イヨト

Example: Backward Selection Using P-Values

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.9251	0.2102	9.16	< 0.0001
income_ver: <i>source_only</i>	0.9750	0.0991	9.83	< 0.0001
income_ver: <i>verified</i>	2.5374	0.1172	21.65	< 0.0001
$debt_to_income$	0.0211	0.0029	7.18	< 0.0001
$\operatorname{credit}_{-}\operatorname{util}$	4.8959	0.1619	30.24	< 0.0001
bankruptcy	0.3864	0.1324	2.92	0.0035
term	0.1537	0.0039	38.96	< 0.0001
issued: Jan2018	0.0276	0.1081	0.26	0.7981
issued: Mar2018	-0.0397	0.1065	-0.37	0.7093
credit_checks	0.2282	0.0182	12.51	< 0.0001

590

《曰》 《圖》 《臣》 《臣》 三臣。

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.9213	0.1982	9.69	< 0.0001
income_ver: <i>source_only</i>	0.9740	0.0991	9.83	< 0.0001
income_ver: <i>verified</i>	2.5355	0.1172	21.64	< 0.0001
$debt_to_income$	0.0211	0.0029	7.19	< 0.0001
$\operatorname{credit}_{-}\operatorname{util}$	4.8958	0.1619	30.25	< 0.0001
bankruptcy	0.3869	0.1324	2.92	0.0035
term	0.1537	0.0039	38.97	< 0.0001
credit_checks	0.2283	0.0182	12.51	< 0.0001

Multiple regression models

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$$

depend on the following conditions:

- Nearly normal residuals.
- ② Constant variability of residuals.
- Independence.
- Each variable linearly related to the outcome.

イロト イヨト イヨト イヨト

3

San

We will consider our final model for the loan data:

$$\begin{split} \hat{rate} = & 1.921 + 0.974 \times \texttt{income_ver}_{\texttt{source}} + 2.535 \times \texttt{income_ver}_{\texttt{verified}} \\ & + 0.021 \times \texttt{debt_income} + 4.896 \times \texttt{credit_util} + 0.387 \times \texttt{bankruptcy} \\ & + 0.154 \times \texttt{term} + 0.228 \times \texttt{credit_check} \end{split}$$

and will examine it for any issues with the model conditions.

As with simple linear regression, there are two ways to check for normality:

- Histograms
- 2 Q-Q Plots

200

(日) (四) (전) (전) (전) (전)

Check for Normality: Histogram

Residuals

16 / 32

A D > A D >

ヨト ヨ

990

Check for Normality: Q-Q Plots

- Since this is such a large dataset (10000 observations), we can relax this assumption some.
- *However*, our prediction intervals may not be valid if we do.

3

San

(日) (종) (종) (종)

Constant Variance

- For data taken in sequence, we might plot *residuals in order of data collection*.
 - This can help identify correlation between cases.
 - If we find connections, we may want to look into methods for time series.
- We may also want to look at the residuals plotted against each predictor variable.
 - Look for change in variability and patterns in the data.

-

Sar

イロト イボト イヨト イヨト

Residuals Versus Specific Predictor Variables

Section 9.3

November 15, 2019

21 / 32

< D > < D

≣ ► = =

Residuals Versus Specific Predictor Variables

November 15, 2019

▶ < ≣ 1</p>
22 / 32

æ

Residuals Versus Specific Predictor Variables

Loan Term, in Months

< D > < B

November 15, 2019

▶ < ≣ 1</p>
23 / 32

æ

- If we choose this as our final model, we must report the observed abnormalities!
- The second option is to look for ways to continue to improve the model.

3

Sar

イロト イヨト イヨト イヨト

One way to improve model fit is to *transform* one or more predictor variables.

- If a variable has a lot of skew and large values have a lot of leverage, we might try
 - Log transformation $(\log x)$
 - Square root transformation (\sqrt{x})
 - Inverse transformation (1/x)

There are many valid transformations!

5900

<ロト (四) (三) (三) (三) (三)

Example: Debt to Income

- We want to deal with this extreme skew.
- There are some cases where debt_to_income = 0.
- This will make log and inverse transformations infeasible.

Section 9.3

26 / 32

Image: A matrix

코 🕨 🛛 코

First we will try a square root transformation

• We create a new variable, sqrt_debt_to_income

 $sqrt_debt_to_income = \sqrt{debt_to_income}$

We then refit the model with sqrt_debt_to_income.

We will also try a truncation at 50.

- We create a new variable, debt_to_income_50.
 - Any values > 50 are shrunk to 50.

We then refit the model with debt_to_income_50.

3

Sar

イロト イヨト イヨト イヨト

Example: Debt to Income

The truncation does a good job fixing the constant variance assumption for this variable.

Section 9.3

November 15, 2019

29 / 32

500

- With the debt to income issue fixed, we should recheck our model assumptions.
- We will find the same issues with the other variables.
- If we decide that this is our final model, we would need to acknowledge these issues.

イロト イヨト イヨト

3

San

The new model is

```
\begin{split} \hat{rate} = & 1.562 + 1.002 \times \texttt{income\_ver_{source}} + 2.436 \times \texttt{income\_ver_{verified}} \\ & + 0.048 \times \texttt{debt\_income} + 4.698 \times \texttt{credit\_util} + 0.394 \times \texttt{bankruptcy} \\ & + 0.153 \times \texttt{term} + 0.223 \times \texttt{credit\_check} \end{split}
```

Notice that the coefficient for debt_income doubled when we dealt with those high leverage outliers.

- While we may report models that with conditions that are slightly violated,
 - ...as long as we acknowledge the violations in our reporting.
- we shouldn't report results when conditions are grossly violated.
- If familiar methods won't cut it, reach out to an expert.

- 1

San

イロト イポト イヨト イヨト