Goodness-of-Fit and Model Selection

November 13, 2019

November 13, 2019

1 / 22

- b- -

E ► E

590

Image: A math and A

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	26.50	1.773	14.95	< 2e-16
trt	-48.20	0.159	-303.71	< 2e-16
sexM	-0.63	0.159	-3.99	7.23e-05
age	0.02	0.012	1.29	0.197
weight	-0.01	0.003	-2.45	0.015
sys.bp	-0.15	0.006	-27.44	< 2e-16
dia.bp	-0.11	0.010	-10.84	< 2e-16
incomelow	-0.23	0.227	-1.01	0.314
incomemed	-0.05	0.238	-0.19	0.848
ldl.pre	0.99	0.008	126.16	< 2e-16

Write out the regression model.

990

《曰》 《圖》 《臣》 《臣》 三臣。

- Interpret the coefficients corresponding to **sexM** and **age**.
- Calculate the residual for the first patient.

	ldl.post	trt	sex	age	weight	sys.bp	dia.bp	income	ldl.pre
1	176	0	Μ	47	186	119	64	low	178

The estimated linear regression line for LDL.post = $\beta_0 + \beta_1$ trt is

LDL. $\hat{post} = 175.0309 - 49.0756 \times trt.$

with $SE(b_1) = 0.6657$.

Why is this different from the estimate and standard error for trt in the multiple regression model?

- We say the two predictor variables are **collinear** when they are correlated.
- This complicates model estimation.
- We can't always prevent collinearity, but we do want to control it.
- Ex: height and arm span give us essentially the same information. We wouldn't want to use both in a model.

San

<ロト (四) (三) (三) (三) (三)

Recall that we used \mathbb{R}^2 to determine the amount of variability explained by the model:

$$R^{2} = 1 - \frac{\text{variability in residuals}}{\text{total variability}} = 1 - \frac{SS_{residuals}}{SS_{total}}$$

We can continue to use this in multiple regression.

- R^2 will always increase when we include more variables in the model.
- This is true even if the variables aren't very useful!
- We want a measure that will help us balance model efficacy with model size.

・ロト ・回ト ・ヨト ・

프 - 프

San

Adjusted \mathbb{R}^2 is computed as

$$R_{adj}^2 = 1 - \frac{SS_{resid}/(n-k-1)}{SS_{total}/(n-1)}$$

where n is the number of observations and k is the number of predictor variables in the model.

Note that k includes the p-1 predictor variables for categorical variables with p levels.

Notice that

$$R_{adj}^2 = 1 - \frac{SS_{resid}}{SS_{total}} \times \frac{(n-1)}{(n-k-1)}$$

and

$$R^2 = 1 - \frac{SS_{resid}}{SS_{total}}$$

Since $k \ge 1$, $R_{adj}^2 < R^2$.

- The idea here lies with degrees of freedom.
- We adjust R^2 based on model and error df.
- This balances efficacy and model size (what we wanted).
- This will also help us compare models.

590

- We want models to balance efficacy and size.
- In multiple linear regression, **model selection** refers to "pruning" variables that are less important.
- Models that have been optimized in this way are referred to as **parsimonious**.
 - (Think parsimonious = "frugal".)
- The model that includes all possible variables is called the **full model**.

Sar

<ロト (四) (三) (三) (三) (三)

The full model:

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	26.50	1.773	14.95	< 2e-16
trt	-48.20	0.159	-303.71	< 2e-16
sexM	-0.63	0.159	-3.99	7.23e-05
age	0.02	0.012	1.29	0.197
weight	-0.01	0.003	-2.45	0.015
sys.bp	-0.15	0.006	-27.44	< 2e-16
dia.bp	-0.11	0.010	-10.84	< 2e-16
incomelow	-0.23	0.227	-1.01	0.314
incomemed	-0.05	0.238	-0.19	0.848
ldl.pre	0.99	0.008	126.16	< 2e-16

Multiple R-squared: 0.9913, Adjusted R-squared: 0.9912

0				0	0
5	PC.	t. 1	on	9	-2
~	~~	••	011	~	

November 13, 2019

12 / 22

(日) (四) (전) (전) (전) (전) (전)

うくで

Removing income:

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	26.41	1.767	14.95	< 2e-16
trt	-48.20	0.159	-303.84	< 2e-16
$\operatorname{sex}M$	-0.62	0.159	-3.91	9.82e-05
age	0.02	0.012	1.29	0.196
weight	-0.01	0.003	-2.49	0.013
sys.bp	-0.15	0.006	-27.62	< 2e-16
dia.bp	-0.10	0.010	-10.83	< 2e-16
ldl.pre	0.99	0.008	126.21	< 2e-16

Multiple R-squared: 0.9913, Adjusted R-squared: 0.9912

・ロト ・西ト ・ヨト ・ヨー うへぐ

- We find that the models have the same R_{adj}^2 !
- Which one should we choose?
- Should we remove more variables?

What if we remove trt?

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-22.61	17.060	-1.33	0.185
sexM	-0.29	1.537	-0.19	0.853
age	0.05	0.113	0.47	0.636
weight	0.002	0.026	0.07	0.947
sys.bp	-0.15	0.054	-2.79	0.005
dia.bp	-0.08	0.094	-0.86	0.389
ldl.pre	1.10	0.076	14.46	< 2e-16

Multiple R-squared: 0.1783, Adjusted R-squared: 0.1733

Section 9.2

November 13, 2019

15 / 22

200

We will discuss two common model selection approaches:

- I Forward Selection
- **2** Backward Elimination

These are referred to as **step-wise** model selection.

Sar

《日》 《圖》 《문》 《문》 - 문

- Backward elimination starts with the full model.
- Variables are removed one-at-a-time until R_{adj}^2 stops improving.
- At each step, we want to remove the least useful variable.

Consider a data set on various loans. We want to predict the interest rate. The available variables are

- interest_rate: loan interest rate
- income_var: whether income source & amount verified. Takes values verified, source only, and not.
- debt_to_income: ratio of debt to income
- credit_util: proportion of credit being utilized
- bankruptcy: whether borrower has previous bankruptcy
- term: length of loan (months)
- issued: month and year loan issued
- credit_checks: number of credit checks in last 12 months

Sar

イロト イポト イヨト イヨト 三日

The full model is

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.9251	0.2102	9.16	< 0.0001
income_ver: <i>source_only</i>	0.9750	0.0991	9.83	< 0.0001
income_ver: <i>verified</i>	2.5374	0.1172	21.65	< 0.0001
$debt_to_income$	0.0211	0.0029	7.18	< 0.0001
$credit_util$	4.8959	0.1619	30.24	< 0.0001
bankruptcy	0.3864	0.1324	2.92	0.0035
term	0.1537	0.0039	38.96	< 0.0001
issued: Jan2018	0.0276	0.1081	0.26	0.7981
issued: Mar2018	-0.0397	0.1065	-0.37	0.7093
$credit_checks$	0.2282	0.0182	12.51	< 0.0001

There are n = 10000 cases in this data set. The variance of the residuals is 18.53, and the variance of the total price is 25.01. Calculate R^2 and R^2_{adj} .

Sar

Can we drop a variable and improve R_{adj}^2 ?

- We got a baseline R_{adj}^2 on the previous slide.
- Variables are eliminated one-at-a-time from the full model.
- R_{adj}^2 is checked each time.
- We move forward with the model with the highest R_{adj}^2

<</td>

</td

After checking the R_{adj}^2 for each potential variable removal, we remove issued.

- Now we repeat the process with the model with issued removed.
- Our new baseline R_{adj}^2 is 0.25854.

Exclude issued and	${{\rm income_ver}}\ R^2_{adj}=0.22395$	$\begin{array}{l} \texttt{debt_to_income} \\ R^2_{adj} = 0.25479 \end{array}$	$\begin{array}{l} \texttt{credit_util} \\ R^2_{adj} = 0.19074 \end{array}$
	$\begin{array}{l} \texttt{bankruptcy} \\ R_{adj}^2 = 0.25798 \end{array}$	$\begin{array}{l} \texttt{term} \\ R^2_{adj} = 0.14592 \end{array}$	$\begin{array}{l} {\rm credit_checks} \\ R_{adj}^2 = 0.24701 \end{array}$

So our final model is

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.9213	0.1982	9.69	< 0.0001
income_ver: <i>source_only</i>	0.9740	0.0991	9.83	< 0.0001
income_ver: <i>verified</i>	2.5355	0.1172	21.64	< 0.0001
$debt_to_income$	0.0211	0.0029	7.19	< 0.0001
$\operatorname{credit}_{-}\operatorname{util}$	4.8958	0.1619	30.25	< 0.0001
bankruptcy	0.3869	0.1324	2.92	0.0035
term	0.1537	0.0039	38.97	< 0.0001
$credit_checks$	0.2283	0.0182	12.51	< 0.0001

Write the regression model for these results.

200

(日) (四) (전) (전) (전) (전)