Introducing Multiple Regression

November 8, 2019

November 8, 2019

1 / 14

DQC

《曰》 《圖》 《臣》 《臣》 三臣

The regression line for the faithful data using waiting to predict eruption was

 $\hat{y} = -1.874 + 0.076x$

The ANOVA table for this regression is

	Df	$\operatorname{Sum}\operatorname{Sq}$	Mean Sq	F value	$\Pr(>F)$
faithful\$waiting	1	286.478	286.478	1162.1	< 2.2e-16
Residuals	270	66.562	0.247		

- Find the appropriate interval for the average eruption time when the wait time is 70 minutes.
- Find the appropriate interval for the specific eruption time when the wait time is 70 minutes.

DQC

- An outcome may be simultaneously influenced by many variables.
- Think back to our randomized block and factorial designs.
- Multiple regression extends this idea into the regression framework.
- We will extend the simple linear regression to include many predictor variables.

San

We will work with a data set that contains patient data for a clinical trial with 1000 participants.

- Each patient entered the study with high LDL cholesterol.
- Patients were randomly assigned to either a medication to manage their cholesterol or to a placebo.
- We can always examine treatment and change in LDL cholesterol.
- But what about other variables?

Sar

<ロト (四) (三) (三) (三) (三)

	ldl.post	trt	sex	age	weight	sys.bp	dia.bp	income	ldl.pre
1	176	0	Μ	47	186	119	64	low	178
2	191	0	Μ	37	185	121	72	med	191
3	155	1	Μ	48	208	106	71	med	203
4	123	1	\mathbf{F}	46	159	106	57	med	168
5	120	1	Μ	37	117	100	74	low	168
6	134	1	\mathbf{F}	38	228	128	71	low	190
÷	÷	÷	÷	÷	÷	÷	÷	÷	

How might weight impact the medication's effectiveness? What about blood pressure?

We start by fitting a linear regression model using trt to predict ldl.post - ldl.pre.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	0.1588	0.1576	1.007	0.314
trt	-48.1471	0.2196	-219.216	$<\!\!2e-16$

Write the regression line. Then, interpret the slope and intercept.

We can also fit models using categorical variables with more than 2 levels.

- The income variable has 3 levels: high, medium, and low.
- Suppose we want to know whether socioeconomic status is relevant to treatment outcomes.

DQC

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-23.6000	1.8949	-12.454	$<\!\!2e-16$
incomelow	-0.9113	2.1937	-0.415	0.678
incomemed	-1.7000	2.2986	-0.740	0.460

- Each row represents the relative difference for each level.
- Notice we are missing income: high. This is the **reference level** that the other variables are measured against.
- I let R choose the reference level, but we could pick any one of the income levels to act as the "default".

San

<ロト (四) (三) (三) (三) (三)

None of the levels of income appear to be good predictors for our treatment outcomes, but let's think about how to use the regression equation.

- When fitting a regression model with a categorical variable that has k levels, standard software will provide a coefficient for k-1 of them.
- For the level that does not receive a coefficient, this is the reference level.
- The coefficients listed for the other levels are all considered relative to this reference level.

-

イロト イヨト イヨト

- The world is complex! More information is typically better information.
- If we have the ability to collect and use many variables, we should use them!
- This is the idea behind **multiple linear regression**.

DQC

We want to construct a model for our cholesterol data using all of the variables simultaneously:

$$\begin{split} \texttt{ldl.post} &= \beta_0 + \beta_1 \times \texttt{trt} + \beta_2 \times \texttt{sex} + \beta_3 \times \texttt{age} \\ &+ \beta_4 \times \texttt{weight} + \beta_5 \times \texttt{sys.bp} + \beta_6 \times \texttt{dia.bp} \\ &+ \beta_7 \times \texttt{income}_{med} + \beta_8 \times \texttt{income}_{low} + \beta_9 \times \texttt{ldl.pre} \end{split}$$

We estimate $\beta_0, \beta_1, \ldots, \beta_9$ the same way we did for our linear regression with only two parameters, by minimzing the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

But... this time we'll definitely use a computer.