
Introducing Multiple Regression

November 8, 2019

November 8, 2019 1 / 14



Example

The regression line for the faithful data using waiting to predict
eruption was

ŷ = −1.874 + 0.076x
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Example

The ANOVA table for this regression is

Df Sum Sq Mean Sq F value Pr(>F)
faithful$waiting 1 286.478 286.478 1162.1 < 2.2e-16
Residuals 270 66.562 0.247

1 Find the appropriate interval for the average eruption time when
the wait time is 70 minutes.

2 Find the appropriate interval for the specific eruption time when
the wait time is 70 minutes.
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Multiple Regression

An outcome may be simultaneously influenced by many variables.

Think back to our randomized block and factorial designs.

Multiple regression extends this idea into the regression
framework.

We will extend the simple linear regression to include many
predictor variables.
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Consider

We will work with a data set that contains patient data for a clinical
trial with 1000 participants.

Each patient entered the study with high LDL cholesterol.

Patients were randomly assigned to either a medication to manage
their cholesterol or to a placebo.

We can always examine treatment and change in LDL cholesterol.

But what about other variables?
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The Data

ldl.post trt sex age weight sys.bp dia.bp income ldl.pre
1 176 0 M 47 186 119 64 low 178
2 191 0 M 37 185 121 72 med 191
3 155 1 M 48 208 106 71 med 203
4 123 1 F 46 159 106 57 med 168
5 120 1 M 37 117 100 74 low 168
6 134 1 F 38 228 128 71 low 190
...

...
...

...
...

...
...

...
...

How might weight impact the medication’s effectiveness? What about
blood pressure?
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Indicator and Categorical Variables as Predictors

We start by fitting a linear regression model using trt to predict
ldl.post - ldl.pre.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.1588 0.1576 1.007 0.314
trt -48.1471 0.2196 -219.216 <2e-16

Write the regression line. Then, interpret the slope and intercept.
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Indicator and Categorical Variables as Predictors

We can also fit models using categorical variables with more than 2
levels.

The income variable has 3 levels: high, medium, and low.

Suppose we want to know whether socioeconomic status is relevant
to treatment outcomes.
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Indicator and Categorical Variables as Predictors

Estimate Std. Error t value Pr(> |t|)
(Intercept) -23.6000 1.8949 -12.454 <2e-16
incomelow -0.9113 2.1937 -0.415 0.678
incomemed -1.7000 2.2986 -0.740 0.460

Each row represents the relative difference for each level.

Notice we are missing income:high. This is the reference level
that the other variables are measured against.

I let R choose the reference level, but we could pick any one of the
income levels to act as the ”default”.
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Example

None of the levels of income appear to be good predictors for our
treatment outcomes, but let’s think about how to use the regression
equation.
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Predictors with Several Categories

When fitting a regression model with a categorical variable that
has k levels, standard software will provide a coefficient for k − 1
of them.

For the level that does not receive a coefficient, this is the
reference level.

The coefficients listed for the other levels are all considered
relative to this reference level.
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Including and Assessing Many Variables in a Model

The world is complex! More information is typically better
information.

If we have the ability to collect and use many variables, we should
use them!

This is the idea behind multiple linear regression.

Section 9.1 November 8, 2019 12 / 14



Including and Assessing Many Variables in a Model

We want to construct a model for our cholesterol data using all of the
variables simultaneously:

ˆldl.post = β0 + β1 × trt + β2 × sex + β3 × age

+ β4 × weight + β5 × sys.bp + β6 × dia.bp

+ β7 × incomemed + β8 × incomelow + β9 × ldl.pre
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Estimating Parameters

We estimate β0, β1, . . . , β9 the same way we did for our linear regression
with only two parameters, by minimzing the sum of squared residuals

SSE =

n∑
i=1

(yi − ŷi)2

But... this time we’ll definitely use a computer.
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