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Regression Example

Asking R for a summary of the regression model, we get the following:

Let’s pick this apart piece by piece.
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Regression Example

The first line shows the command used in R to run this regression
model.

The Residuals item shows a quartile-based summary of our
residuals.
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Regression Example

The F-statistic and p-value give information about the model
overall.

These are based on an F-distribution.

The null hypothesis is that all of our model parameters are 0 (the
model gives us no good info).

Since p-value< 2.2× 10−16 < α = 0.05, at least one of the
parameters is nonzero (the model is useful).

Section 8.4 November 6, 2019 4 / 23



Regression Example

Multiple R-squared is our squared correlation coefficient R2.

This tells us how good our fit is.

Ignore the adjusted R-squared and residual standard error for now.
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Regression Example

Finally, the Coefficients section gives us several pieces of
information:

1 Estimate shows the estimated parameters for each value.

2 Std. Error gives the standard error for each parameter estimate.

3 The t valuess are the test statistics for each parameter estiamte.

4 Finally, Pr(>|t|) are the p-values for each parameter estimate.
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Regression Example

The hypothesis test for each regression coefficient has hypotheses

H0 : βi = 0

HA : βi 6= 0

where i = 0 for the intercept and i = 1 for the slope.
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Regression Example

p− value < 2× 10−16 for b0 so we can conclude that the intercept
is nonzero.

p− value < 2× 10−16 for b1 so we conclude that the intercept is
also nonzero.

This means that the intercept and slope both provide useful
information when predicting values of y = eruptions.
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Confidence Intervals for a Coefficient

We can construct confidence intervals similar to those for hypothesis
tests. A (1− α)100% confidence interval for βi is

bi ± tα/2(df)× SE(bi)

where the model df and SE can be found in the regression output.
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Aside: ANOVA for Regression Models

ANOVA will also play a role in regression.

We can get the ANOVA table for a regression.
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Aside: ANOVA for Regression Models

The ANOVA table in regression will look something like this:

Df Sum Sq Mean Sq F value Pr(>F)
faithful$waiting 1 286.478 286.478 1162.1 < 2.2e-16
Residuals 270 66.562 0.247
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Example

Find 95% confidence intervals for β0 and β1.
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Estimation and Prediction Using a Regression Line

We now know

how to examine if a model is useful.

how to confirm that our regression assumptions are satisfied.
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Estimation and Prediction Using a Regression Line

Given a useful regression line, we want to

estimate an average value of y for a given value of x.

estimate a particular value of y for a given value of x.
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Estimation and Prediction Using a Regression Line

We’ve already talked about using a regression line to make predictions.

ŷ = b0 + b1x

Plug in x and we get a good estimate for the average value of y at that
point.
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Estimation and Prediction Using a Regression Line

Point estimates are useful, but we want to consider variability!

Recall: one of our regression assumptions is normally distributed
errors.

This means that the variability around the regression line should
be approximately normal

with mean β0 + β1x
and standard deviation σ.
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The Variability of ŷ

Notice that ŷ is an estimator.

The variability of an estimator is its standard error.

Then σ is well-approximated by

SE(ŷ) =

√
MSE

(
1

n
+

(x0 − x̄)2

SSx

)
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The Variability of ŷ

Since we are working with a normal distribution, estimation and
testing can be based on the test statistic

t =
ŷ − y0
SE(ŷ)

which corresponds to a t(n− 2) distribution.
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Confidence Intervals for y

A (1− α)100% confidence interval for the average value of y (measured
by β0 + β1x) when x = x0 is

ŷ ± tα/2(n− 2)× SE(ŷ)

or

ŷ ± tα/2(n− 2)×

√
MSE

(
1

n
+

(x0 − x̄)2

SSx

)
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Prediction Intervals for y

So far, we’ve only considered average values of the outcome
variable y.

What if we wanted to predict a particular value of y?
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Prediction Intervals for y

For a residual,
e = ε+ error in estimating line

We don’t know the true breakdown between these components.

...but we can use this concept to build a new standard error
formula.
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Prediction Intervals for y

The standard error of (y − ŷ) is

SE(y − ŷ) =

√
MSE

(
1 +

1

n
+

(x0 − x̄)2

SSx

)
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Prediction Intervals for y

A (1− α)100% prediction interval for a specific value of y when
x = x0 is

ŷ ± tα/2(n− 2)× SE(y − ŷ)

or

ŷ ± tα/2(n− 2)×

√
MSE

(
1 +

1

n
+

(x0 − x̄)2

SSx

)
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