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Fitting a Line to Data

In this section, we will talk about fitting a line to data.

Linear regression will allow us to look at relationships between two
(or more) variables.

This is a bit like ANOVA, but now we will be able to predict
outcomes.
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Fitting a Line to Data

This relationship can be modeled perfectly with a straight line:

y = 5 + 64.96x

I.e., x and y are perfectly correlated.
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Fitting a Line to Data

When we can model a relationship perfectly,

y = 5 + 64.96x,

we know the exact value of y just by knowing the value of x.

However, this kind of perfect relationship is pretty unrealistic... it’s
also pretty uninteresting.
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Linear Regression

Linear regression takes this idea of fitting a line and allows for some
error:

y = β0 + β1x+ ε

β0 and β1 are the model’s parameters.

The error is represented by ε.
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Linear Regression

The parameters β0 and β1 are estimated using data.

We denote these point estimates by b0 and b1.

...or sometimes β̂0 and β̂1
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Linear Regression

For a regression line
y = β0 + β1x+ ε

we make predictions about y using values of x.

y is called the response variable.

x is called the predictor variable.

Section 8.1 October 28, 2019 7 / 36



Linear Regression

When we find our point estimates b0 and b1, we usually write the line as

ŷ = b0 + b1x

We drop the error term because it is a random, unknown quantity.
Instead we focus on ŷ, the predicted value for y.

Section 8.1 October 28, 2019 8 / 36



Linear Regression

As with any line, the intercept and slope are meaningful.

The slope β1 is the change in y for every one-unit change in x.

The intercept β0 is the predicted value for y when x = 0.
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Clouds of Points
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Clouds of Points

Think of this like the 2-dimensional version of a point estimate.

The line gives our best estimate of the relationship.

There is some variability in the data that will impact our
confidence in our estimates.

The true relationship is unknown.
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Linear Trends

Sometimes, there is a clear relationship but simple linear regression
won’t work! We will talk about this later in the term.

Section 8.1 October 28, 2019 12 / 36



Prediction

Often, when we build a regression model our goal is prediction.

We want to use information about the predictor variable to make
predictions about the response variable.
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Example: Possum Head Lengths

Remember our brushtail possums?
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Example: Possum Head Lengths

Researchers captured 104 brushtail possums and took a variety of body
measurements on each before releasing them back into the wild.

We consider two measurements for each possum:

total body length.

head length.
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Example: Possum Head Lengths
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Example: Possum Head Lengths

The relationship isn’t perfectly linear.

However, there does appear to be a linear relationship.

We want to try to use body length to predict head length.
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Example: Possum Head Lengths

The textbook gives the following linear relationship:

ŷ = 41 + 0.59x

As always, the hat denotes an estimate of some unknown true value.
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Example: Possum Head Lengths

Predict the head length for a possum with a body length of 80 cm.
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Example: Possum Head Lengths

If we had more information (other variables), we could probably get a
better estimate.

We might be interested in including

sex

region

diet

or others.

Absent addition information, our prediction is a reasonable estimate.
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Residuals

Residuals are the leftover variation in the data after accounting for
model fit:

data = prediction + residual

Each observation will have its own residual.
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Residuals

Formally, we define the residual of the ith observation (xi, yi) as the
difference between observed (yi) and expected (ŷi):

ei = yi − ŷi

We denote the residuals by ei and find ŷ by plugging in xi.
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Residuals

If an observation lands above the regression line,

ei = yi − ŷi > 0.

If below,
ei = yi − ŷi < 0.
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Residuals

When we estimate the parameters for the regression, our goal is to get
each residual as close to 0 as possible.
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Example: Possum Head Lengths

The residual for each observation is the vertical distance between the
line and the observation.
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Example: Possum Head Lengths

The scatterplot is nice, but a calculation is always more precise. Let’s
find the residual for the observation (77.0, 85.3).

Section 8.1 October 28, 2019 26 / 36



Residual Plots

Our goal is to get our residuals as close as possible to 0.

Residuals are a good way to examine how well a linear model fits a
data set.

We can examine these quickly using a residual plot.
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Residual Plots

Residual plots show the x-values plotted against their residuals.
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Residual Plots

We use residual plots to identify characteristics or patterns.

These are things that are still apparent event after fitting the
model.

Obvious patterns suggest some problems with our model fit.
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Residual Plots
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Correlation

We’ve talked about the strength of linear relationships, but it would be
nice to formalize this concept.

The correlation between two variables describes the strength of their
linear relationship. It always takes values between -1 and 1.
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Correlation

We denote the correlation (or correlation coefficient) by R:

R =
1

n− 1

n∑
i=1

(
xi − x̄

sx
× yi − ȳ

sy

)
where sx and sy are the respective standard deviations for x and y.
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Correlation

Correlations

Close to -1 suggest strong, negative linear relationships.

Close to +1 suggest strong, positive linear relationships.

Close to 0 have little-to-no linear relationship.
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Correlation

Note: the sign of the correlation will match the sign of the slope!

If R < 0, there is a downward trend and b1 < 0.

If R > 0, there is an upward trend and b1 > 0.

If R ≈ 0, there is no relationship and b1 ≈ 0.
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Correlation

Section 8.1 October 28, 2019 35 / 36



Correlations

Correlations only represent linear trends!
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