Multiple Comparisons

October 18, 2019

October 18, 2019

1 / 17

<ロト <回ト < 回ト

臣▶ 臣.

990

For an ANOVA,

$$H_0: \quad \mu_1 = \mu_2 = \dots = \mu_k$$

$$H_A: \quad \mu_i \neq \mu_j \quad \text{for at least one pair } (i, j)$$

If we reject H_0 , we know that at least one mean differs... but we don't know where those differences lie.

Consider an ANOVA with three groups. If we reject H_0 , there are three comparisons to make:

- group 1 and group 2
- group 1 and group 3
- group 2 and group 3

Most of this builds on techniques you already know!

- We compare groups using a two-sample t-test.
- But we need to modify the significance level.
- We also use a pooled standard deviation estimate.

590

- A university offers 3 lectures for an introductory psychology course.
- A single professor offers 8am, 10am, and 3pm lectures.
- We want to know if the average midterm scores differ between these lectures.

We already wrote down hypotheses for this ANOVA.

Are the ANOVA conditions satisfied?

					100			
Class i	А	В	С	ores	80 -			
n_i	58	55	51	S S				
\bar{x}_i	75.1	72.0	78.9	idter	60 -			
s_i	13.8	13.9	13.1	Σ				
					40 -	1		
						Α	В	С
							Lecture	

October 18, 2019

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ 필 · 의 Q (~)
6 / 17

Here is part of the ANOVA for this data (R output):

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
lecture			645.06		0.0330
Residuals			185.16		

Let's fill in the rest. What can we conclude?

DQC

So at least one pair of means differ... but which?

• We need to correct for Type I error before running our t-tests.

Pooled standard error may be calculated as follows:

$$s_{pooled} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_k - 1)s_k^2}{n - k}}$$

where $n = n_1 + n_2 + \cdots + n_k$ is the total number of observations.

If each group's sample size is equal,

$$s_{pooled} = \sqrt{\frac{s_1^2 + s_2^2 + \dots + s_k^2}{k}}$$

The degrees of freedom for these t-tests will be n - k.

<□▶ <□▶ < 三▶ < 三▶ < 三▶ Ξ のQ() 10 / 17

Class i	А	В	С
n_i	58	55	51
\bar{x}_i	75.1	72.0	78.9
s_i	13.8	13.9	13.1

Let's calculate the pooled standard error for our exams.

 ${\tt R}$ also provides the pooled standard deviation estimate with the ANOVA output.

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
lecture	2	1290.11	645.06	3.48	0.0330
Residuals	161	29810.12	185.16		
			$s_{pooled} =$	= 13.61 on	df = 161

- The final adjustment is to modify the significance level.
- When we do many pairwise comparisons, we increase our chances of Type I error.
- This correction will adjust our probability of Type I error.
- Adjusted significance levels will help ensure that the Type I error is no greater than α .

San

<ロト (四) (三) (三) (三) (三)

Testing many pairs of groups is called **multiple comparisons**. The **Bonferroni correction** sets a new significance level α^* :

$$\alpha^* = \alpha/K$$

where K is the number of comparisons.

Complete the pairwise comparisons for the three lectures.

If we fail to reject H_0 in an ANOVA

- No pairwise comparisons are necessary.
- (None will be significant.)

If we reject H_0 in an ANOVA

- Sometimes our pairwise comparisons won't show any significance.
- This does not invalidate the ANOVA results!

3

San

The Bonferroni correction is one method of many! Others include

- Tukey's Honest Significant Difference
- Scheffe's Method
- and others.

We will not learn these in detail.