Analysis of Variance

October 16, 2019

October 16, 2019

1 / 23

画 🔺 👘 亜

990

- Question: is the variability in the sample means so large that it seems unlikely to be from chance alone?
- We call this variability the **mean square between groups** (MSG) or **mean square for treatment** (MST).

- This acts as a measure of variability for the k group means.
- It has degrees of freedom $df_G = k 1$.
- If H_0 is true, we expect this variability to be small.

$$MSG = \frac{1}{df_G}SSG$$
$$= \frac{1}{k-1}\sum_{i=1}^k (\bar{x}_i - \bar{x})^2$$

where SSG is the sum of squares between groups.

・ロト ・回ト ・ヨト

< 注 → 三 注

Mean Square Between Groups

...but MSG isn't very useful on its own.

Section 7.5

October 16, 2019

5 / 23

ł

- We need an idea of how much variability would be expected (or normal) if H_0 were true.
- This is done using a pooled variance estimate, called the **mean** square error (MSE).
- This is a measure of variability within groups.
- MSE has degrees of freedom $df_E = n k$

$$MSE = \frac{1}{df_E}SSE$$
$$= \frac{1}{n-k}\sum_{i=1}^k (n_i - 1)s_i^2$$

where SSE is the sum of squares for error and s_i is the standard deviation for the observations in group i.

・ロト ・回ト ・ヨト ・

프 - 프

It's also useful to think of a sum of squares total (SST)

$$SST = SSG + SSE$$

and total degrees of freedom

$$df_T = df_G + df_E$$
$$= k - 1 + n - k$$
$$= n - 1$$

Section 7.5

October 16, 2019

8 / 23

200

(日) (四) (전) (전) (전) (전) (전)

If we were to find the mean square total,

$$MST = \frac{1}{df_T}SST$$
$$= \frac{1}{n-1}(SSG + SST)$$
$$= \frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2$$

we would get the variance across all observations!

The ANOVA breaks the variance down into

- within group (random) variability (MSE).
- between group (means) variability (MSG).

We want to know how much variability is due to differences in groups *relative to the within groups variability*.

So our test statistic is

$$F = \frac{MSG}{MSE}$$

For our baseball example,

	OF	IF	С
Sample size (n_i)	160	205	64
Sample mean (\bar{x}_i)	0.320	0.318	0.302
Sample sd (s_i)	0.043	0.038	0.038

MSG = 0.00803 and MSE = 0.00158.

Find the degrees of freedom and the F statistic.

With our F distribution comes the F-test. Using the F-distribution, we calculate

- $F_{\alpha}(df_1, df_2)$ critical values.
- $\bullet\,$ p-values

If the between-group variability is high relative to the within group variability,

- MSG > MSE
- F will be large.
- Large values of F represent stronger evidence against the null.

This is the F(2, 426) distribution from our baseball example.

• F-test p-values will always be from the upper tail area.

- We no longer have one- or two-sided tests to worry about.
- The critical value is $F_{0.05}(2, 426) = 3.0169$.

æ

< □ > < □ > < □</p>

What can we conclude about the baseball field positions?

Recall $F_{0.05}(2, 426) = 3.0169$.

Section 7.5

October 16, 2019

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

- Typically we will run ANOVA using software.
- Fortunately there is a standard output for this analysis.

Let's take some time to write out the ANOVA table.

This is the ANOVA from **R** for the MLB example.

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
position	2	0.0161	0.0080	5.0766	0.0066
Residuals	426	0.6740	0.0016		

What can we conclude based on the table?

200

(日) (四) (注) (注) (三)

Suppose we have 10 data points from each of 5 groups of interest.

Source	df	\mathbf{SS}	MS	\mathbf{F}
Group			3	
Error				
Total		20		

Fill in the missing information from the ANOVA table.

Section 7.5

October 16, 2019

4 ロ ト 4 回 ト 4 目 ト 4 目 ト 目 の Q (*) 19 / 23 There are three conditions for ANOVA:

- Independence
- **2** Approximate normality
- Onstant variance

 $\equiv \rightarrow$

→ Ξ →

A D > A D >

3

- It is reasonable to assume independence if the data are a simple random sample.
- If the data are not a random sample, consider carefully.
 - In the MLB example, no clear reason why a player's batting stats would impact another player's batting stats.

Sar

ANOVA Diagnostics: Normality

- Normality is especially important for small samples.
- For large samples, ANOVA is *robust to* deviations from normality.

22 / 23

1

ANOVA Diagnostics: Constant Variance

- We can check this visually or by examining the standard deviations for each group.
- Constant variance is especially important when the sample sizes differ between groups.

Section 7.5

23 / 23