Analysis of Variance

October 14, 2019

October 14, 2019

1 / 26

恵 🛌 恵

990

We've spent some time with hypothesis tests for 1 and 2 means... but what if we want to compare 3 or more means?

- We might think to do pairwise comparisons.
- However, eventually we are likely to reject H_0 by chance alone.
- We want a holistic test to examine 3 or more means.

San

<ロト (四) (三) (三) (三) (三)

The holistic test we want is called **ANalysis Of VAriance** or **ANOVA**.

- The ANOVA tests whether means across many groups are equal.
- This relies on a new distribution, *F*.

The basic hypotheses for the ANOVA are

- H_0 : The mean outcome is the same across all groups.
- H_A : At least one mean is different.

In statistical notation, we write

$$H_0: \quad \mu_1 = \mu_2 = \dots = \mu_k$$

$$H_A: \quad \mu_i \neq \mu_j \quad \text{for at least one pair } (i, j)$$

where k is the number of means being compared and i, j represent the *i*th and *j*th groups.

There are three core conditions for ANOVA:

- Observations independent within and between groups.
- **2** Data within each group are nearly normal.
- Variability across groups is about equal.

Image: A matrix

프 - 프

DQC

- A university offers 3 lectures for an introductory psychology course.
- A single professor offers 8am, 10am, and 3pm lectures.
- We want to know if the average midterm scores differ between these lectures.

Describe appropriate hypotheses to determine whether there are any differences between the three classes.

- Strong evidence favoring H_A will be unusually large differences between group means.
- It may come as a surprise, but we will quantify this by examining variability.

Example: High Within Group Variance

Example: Low Within Group Variance

Example: All 6 Groups

- We were able to see the differences in groups 4, 5, and 6 more easily.
- The differences in center are more obvious because the differences are large *relative to the within group variability*.

3

San

・ロト ・回ト ・ヨト ・

Example: MLB Batting Performance and Player Position

- We want to determine whether batting performance differs between positions (outfielder, infielder, and catcher).
- We have a dataset from 2018 with batting records of 429 MLB players.
- We will compare on-base percentage, roughly the fraction of times a player gets on base or hits a home run.

3

イロト イポト イヨト イヨト

	Name	Team	Position	OBP
1	Abreu, J	CWS	IF	0.325
2	Acuna Jr., R	ATL	OF	0.366
3	Adames, W	TB	IF	0.348
÷	:	÷	:	:
427	Zimmerman, R	WSH	IF	0.337
428	Zobrist, B	CHC	IF	0.378
429	Zunino, M	SEA	С	0.259

October 14, 2019

Write the null and alternative hypotheses.

The by-group summary statistics are

	OF	IF	С
Sample size (n_i)	160	205	64
Sample mean (\bar{x}_i)	0.320	0.318	0.302
Sample sd (s_i)	0.043	0.038	0.038

October 14, 2019

17 / 26

< E

토 🛌 🗄

990

A B +
A B +
A

- The largest difference is between the OF and C groups.
- Why not just run a test of $H_0: \mu_{OF} = \mu_C$?
 - We may miss differences between μ_{OF} and μ_{IF} or μ_C and μ_{IF} .
 - We are inspecting the data before picking comparison groups.

Sac

<ロト (四) (三) (三) (三) (三)

Informal testing (looking at graphs or summary statistics) before choosing tests is called **data snooping**, **data fishing**, or **data hacking**.

• This will inflate the Type I error rate.

Source: xkcd "Significant" (https://xkcd.com/882/)

Source: xkcd "Significant" (https://xkcd.com/882/)

Source: xkcd "Significant" (https://xkcd.com/882/)

Source: xkcd "Significant" (https://xkcd.com/882/)

<ロト <回ト < 回ト < 三ト

October 14, 2019

23 / 26

Ð.

200

The F Distribution

Section 7.5

24 / 26

≣⇒

< D > < D

 The F distribution...

- Only takes values ≥ 0 .
- Is always right skewed.
- Depends on two sets of degrees of freedom $(df_1 \text{ and } df_2)$.

We say $X \sim F(df_1, df_2)$.

The F distribution can be written as the ratio of two variances.

 $\frac{s_1/df_1}{s_2/df_2}$

will have an $F(df_1, df_2)$ distribution.