Hypothesis Tests for One-Sample Means

September 30, 2019

Interval Probabilities

Adult male heights follow $N(70.0,3.3)$. What is the probability that a random adult male is between 69 and 74 inches?

The 68-95-99.7 Rule

The 68-95-99.7 Rule is a good general rule for thinking about the normal distribution.

- 68% of the observations will fall within 1 standard deviation of the mean
- 95% of the observations will fall within 2 standard deviations of the mean
- 99.7% of the observations will fall within 3 standard deviations of the mean

This can be useful when trying to make a quick Z-score estimate without access to software.

Outliers

We can also use Z-score and the 68-95-99.7 Rule to look for outliers.

- We expect 95% of the observations to fall within 2 standard deviations, so observations outside of this are unusual.
- We expect 99.7% of the observations to fall within 3 standard deviations, so observations outside of this are very unusual or outliers.

Note: the probability of being further than 4 standard deviations from the mean is about 1 -in- 15,000 .

Point Estimates

- Your friend claims that Trump has tweeted an average of 10 times per day in 2019.
- We consider 10 tweets to be a point estimate for the true average number of daily tweets.
- The true number is what we would get if we counted all of Trump's tweets in 2019 and divided by the total number of days (as of July 19, the true average was $15.6!$).
- This is the parameter of interest.

Point Estimates

- When the parameter is a mean, it is denoted by $\mu(\mathrm{mu})$.
- The sample mean is denoted \bar{x} (x-hat).
- Unless we collect responses from every case in the population, μ is unknown.
- We use \bar{x} as our estimate of μ.

Sampling Distribution

Sample \#	Observations	Mean
1	$x_{1,1}$	$x_{1,2} \ldots x_{1, n}$
2	$x_{2,1}$	$x_{2,2} \ldots x_{2, n}$
3	$x_{3,1}$	$x_{3,2} \ldots x_{3, n}$
\bar{x}_{2}	\bar{x}_{3}	

Etc.
\bar{x} will change each time we get a new sample. Therefore, when x is a random variable, \bar{x} is also a random variable.

Error

- The difference between the point estimate and the population parameter is called the error in the estimate.
- Error consists of two aspects:
(1) sampling error
(2) bias.

Bias

- Bias is a systematic tendency to over- or under-estimate the population true value.
- E.g., Suppose we were taking a student poll asking about support for a UCR football team.
- Depending on how we phrased the question, we might end up with very different estimates for the proportion of support.
- We try to minimize bias through thoughtful data collection procedures.

Sampling error

- Sampling error is how much an estimate tends to vary between samples.
- This is also referred to as sampling uncertainty.
- E.g., in one sample, the estimate might be 1% above the true population value.
- In another sample, the estimate might be 2% below the truth.
- Our goal is often to quantify this error.

Sampling Distribution

We can characterize the distribution of the sample statistic (the sampling distribution) as follows:

- The center is $\bar{x}=\mu$.
- The standard deviation of the sampling distribution (the standard error) is $s_{\bar{x}}=\sigma / \sqrt{n}$.
- Symmetric and bell-shaped.

Note that the sampling distribution is never actually observed!

Central Limit Theorem

When observations are independent and the sample size is sufficiently large ($n \geq 30$), the sample mean \bar{x} will tend to follow a normal distribution with mean

$$
\mu_{\bar{x}}
$$

and standard error

$$
S E_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

Example

Find the distribution of \bar{x} given $\mu=15, \sigma=10$ and $n=100$.

Example

Estimate how frequently the sample mean \bar{x} should be within 2 units of the population mean, $\mu=15$.

Central Limit Theorem in the Real World

- In a real-world setting, we almost never know the true population standard deviation.
- Instead, we use the plug-in principle:

$$
S E_{\bar{x}} \approx \frac{s}{\sqrt{n}}
$$

This estimate of the standard error tends to be a good approximation of the true standard error.

More About the CLT

- The sampling distribution is always centered at the true population mean μ.
- So \bar{x} is an unbiased estimate of μ.
- (As long as the data are independent!)

More About the CLT

- The variability decreases as the sample size n increases.
- Remember our formula for standard error!
- Estimates based on a larger sample are intuitively more likely to be accurate.

