More Nonparametric Methods

December 4, 2019

December 4, 2019

1 / 18

DQC

《曰》 《圖》 《臣》 《臣》 三臣

The Wilcoxon signed-rank test is the nonparametric alternative to the paired t-test.

- Requires numeric data.
- The t-test requires that the differences are normally distributed.
- The Wilcoxon signed-rank test does not have these same requirements.

DQC

<ロト (四) (三) (三) (三) (三)

Example

A manufacturing firm is examining task completion times for two production methods.

Worker	Method 1	Method 2	Difference
1	10.2	9.5	0.7
2	9.6	9.8	-0.2
3	9.2	8.8	0.4
4	10.6	10.1	0.5
5	9.9	10.3	-0.4
6	10.2	9.3	0.9
7	10.6	10.5	0.1
8	10.0	10.0	0
9	11.2	10.6	0.6
10	10.7	10.2	0.5
11	10.6	9.8	0.8

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

- **1** Take the difference.
- **2** Take the absolute value of the difference.
- **③** Rank the absolute values of the differences.
- Reapply the signs from the differences to these ranks.
- Sum the signed ranks.

 $\equiv +$

・ロト ・日下・ ・日下・

3

Sar

Find the sum of the signed ranks for the manufacturing firm data.

Nonparametric Tests

December 4, 2019

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let T denote the sum of the signed-rank values.

For data with at least 10 pairs, T is well-approximated by

$$N\left(\mu=0,\sigma=\sqrt{\frac{n(n+1)(2n+1)}{6}}\right)$$

where n is the number of pairs with a nonzero difference.

Find the normal distribution that approximates ${\cal T}$ for the manufacturer data.

Nonparametric Tests

December 4, 2019

<□▶ <□▶ < 三▶ < 三▶ < 三▶ Ξ のQ ()</p>
7 / 18

Then the test statistic z is

$$z = \frac{T - \mu}{\sigma}$$

Find the test statistic for the manufacturer data.

- Now we want to examine the difference between two *unpaired* samples.
- All of these nonparametric tests require only independent, random samples.
- (No distributional assumptions.)
- This is the nonparametric analog to the two-sample t-test.

San

<ロト (四) (三) (三) (三) (三)

The MWW Test examines

- H_0 : The two populations have the same distribution.
- H_A : The two populations do not have the same distribution.

- Most of the students attending a particular high school came from one of two middle schools.
- The administration wants to know if the academic potential is the same between the students from these two schools.

(日) (종) (종) (종)

3

Sar

Class standings of a random sample of 9 students are

Garfie	eld Students	Mulberry Students		
Student	Class Standing	Student	Class Standing	
Fields	8	Hart	70	
Clark	52	Phipps	202	
Jones	112	Kirkwood	144	
Tibbs	21	Abbott	175	
		Guest	146	

To perform a MWW test,

- Rank the combined data.
- **②** Split the data back up and sum the ranks.

For small samples $(n_1, n_2 < 10)$, critical values for the MWW Test come from a table.

- T_L , the lower tail of the rejection region, comes directly from the table.
- T_U , the upper tail, is calculated as

$$T_U = n_1(n_1 + n_2 + 1) - T_L$$

• n_1 is the sample whose rank sum is being used in the test.

The MWW Test: Tables

						n_2				
		2	3	4	5	6	7	8	9	10
	2	3	3	3	3	3	3	4	4	4
	3	6	6	6	7	8	8	9	9	10
	4	10	10	11	12	13	14	15	15	16
	5	15	16	17	18	19	21	22	23	24
	6	21	23	24	25	27	28	30	32	33
n_1	7	28	30	32	34	35	37	39	41	43
	8	37	39	41	43	45	47	50	52	54
	9	46	48	50	53	56	58	61	63	66
	10	56	59	61	64	67	70	73	76	79

We reject H_0 if $T < T_L$ or $T > T_U$.

...but we prefer not to use tables or unfamiliar distributions!

If $n_1, n_2 \ge 10$, we use a normal approximation with

$$\mu = \frac{1}{2}n_1(n_1 + n_2 + 1)$$

$$\sigma = \sqrt{\frac{1}{12}n_1n_2(n_1 + n_2 + 1)}$$

Nonparametric Tests

December 4, 2019

<□▶ <□▶ < 三▶ < 三▶ < 三▶ E のQ() 15 / 18

- The Third National Bank has two branch offices.
- Random samples of account balances taken from each branch.
- Do the data indicate that the account balances are distributed differentially between the two branches?

<ロト <回ト < 回ト < 三ト

3

DQC

Example

Bran		Branch 2			
Account	Balance	А	ccount	Balance	
1	1095	1		885	
2	995	2		850	
3	1200	3		915	
4	1195	4		950	
5	925	5		800	
6	950	6		750	
7	805	7		865	
8	945	8		1000	
9	875	9		1050	
10	1055	1	0	935	
11	1025				
12	975				

Nonparametric Tests

December 4, 2019

17 / 18

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Example

В	Franch 1		Branch 2				
Account	Balance	Rank	Account	Balance	Rank		
1	1095	20	1	885	7		
2	995	14	2	850	4		
3	1200	22	3	915	8		
4	1195	21	4	950	12.5		
5	925	9	5	800	2		
6	950	12.5	6	750	1		
7	805	3	7	865	5		
8	945	11	8	1000	16		
9	875	6	9	1050	18		
10	1055	19	10	935	10		
11	1025	17					
12	975	15					

Nonparametric Tests

18 / 18