Introduction to Nonparametric Methods

December 2, 2019

December 2, 2019

1 / 14

DQC

《日》 《圖》 《臣》 《臣》 三臣.

- The methods discussed thus far are all **parametric methods**.
 - Parametric methods make a lot of assumptions about model parameters, such as distributional assumptions.
- We will introduce some **nonparametric methods**.
 - These require less restrictive assumptions.

- The data are *nominal* or *ordinal* in nature (ordered or unordered categorical).
- The parametric assumptions for a test are not satisfied.
 - When we used t-tests, we needed to assume normality.
 - When the populations are not normally distributed, we should use a nonparametric test instead.

3

San

イロト イヨト イヨト ・

- Even if a parametric method is appropriate, nonparametric methods tend to give similar results.
 - We don't always use them because they can be more complex to interpret.
 - Nonparametric methods may also have slightly lower power.

Sar

- A company is producing a new orange juice.
- They want to know whether people prefer their orange juice or a competitor's orange juice.
- 12 individuals were given unmarked samples of orange juice in a random order.
- Each individual identified with orange juice they preferred.
- We want to know whether preferences for the two juices are equal.

The hypotheses are

 $H_0: p = 0.5$ No difference in preference. $H_A: p \neq 0.5$ One product is preferred more than the other.

Example: The Data

Individual Brand Preference

- 1 Tropical Orange
- 2 Tropical Orange
- 3 Citrus Valley
- 4 Tropical Orange
- 5 Tropical Orange
- 6 Tropical Orange
- 7 Tropical Orange
- 8 Tropical Orange
- 9 Citrus Valley
- 10 Tropical Orange
- 11 Tropical Orange
- 12 Tropical Orange

7 / 14

3

590

<ロト <回ト < 回ト < 三ト

Under H_0 , the number of + signs is distributed Binomial(n, p).

The p-value for the sign test with hypotheses

 $H_0: p = 0.5$ No difference in preference. $H_A: p \neq 0.5$ One product is preferred more than the other.

is

 $2 \times P(\text{number of } + \text{ signs } \leq \text{ observed number of } + \text{ signs})$

Find the p-value for the orange juice example. What are the conclusions for this test?

For a Binomial (n = 12, p = 0.5) distribution,

Number of $+$	Probability	Number of +	Probability
0	0.0002	7	0.1934
1	0.0029	8	0.1208
2	0.0161	9	0.0537
3	0.0537	10	0.0161
4	0.1208	11	0.0029
5	0.1934	12	0.0002
6	0.2256		

December 2, 2019

- The sign test is the nonparametric version of the *one-sample t-test*.
- The previous example showed it used for proportions.
- We can also use this test for measures of center.
 - For nonparametric tests, we often use the median as a measure for center.

 H_0 : Median = M_0 H_A : Median $\neq M_0$

- Recall: the median splits the data in half so that 50% of the values fall above and 50% fall below.
- We apply the sign test by using a + sign when the value is above the hypothesized median and a - sign when it is below.
- The computations are otherwise the same.

- Recall: we can use a normal distribution to approximate the binomial distribution.
- For large values of n, a Binomial(n, p) is well-approximated by

$$N(\mu=np,\sigma=\sqrt{np(1-p)})$$

We want to know about the median home price in St. Louis, MO.

 H_0 : Median = \$75,000 H_A : Median \neq \$75,000

- There is a sample of n = 62 sales.
- 37 had prices above \$75,000.
- 23 had prices below \$75,000.
- 2 had prices exactly equal to \$75,000.

- 12

San

(日) (종) (종) (종)