Confidence Intervals for a Sample Proportion

August 20, 2019

Midterm Scores

One of your observant peers caught a typo on my exam key! Exam grades have been updated in iLearn.

Office Hours

Today's office hours are from 12-2 PM.

A Note on Standard Error

Recall that standard error is closely related to both standard deviation and sample size. In fact,

$$
S E=\frac{s d}{\sqrt{n}}
$$

This is true regardless of the population parameter of interest.

Confidence Intervals

- \hat{p} is a single plausible value for the population proportion p.
- But there is always some standard error associated with \hat{p}.
- We want to be able to provide a plausible range of values instead.

A Range of Values is Like a Net

- A point estimate is like spear fishing in murky waters.
- Chances are we'll miss our fish.
- A range of values is like casting a net.
- Now we have a much higher chance of catching our fish.

This range of values is called a confidence interval.

Confidence Intervals

The idea behind a confidence interval is

- Building an interval related to \hat{p}
- This interval captures a range of plausible values.
- With more values come more opportunities to capture the true population parameter.

Confidence Intervals

If we want to be very certain that we capture the population parameter, should we use a wider or a smaller interval?

95% Confidence Intervals

- Based on our sample, \hat{p} is the most plausible value for p.
- Therefore will build our confidence interval around \hat{p}.
- The standard error will act as a guide for how large to make the interval.

95% Confidence Intervals

- When the Central Limit Theorem conditions are satisfied, the point estimate comes from a normal distribution.
- For a normal distribution, 95% of the data is within $|Z|=1.96$ standard deviations of the mean.
- Our confidence interval will extend 1.96 standard errors from the sample proportion.

95\% Confidence Intervals

Putting these together, we can be 95% confidence that the following interval captures the population proportion:
point estimate $\pm 1.96 \times S E$

$$
\hat{p} \pm 1.96 \times \sqrt{\frac{p(1-p)}{n}}
$$

95\% Confidence Intervals

In this interval, the upper bound is

$$
\hat{p}+1.96 \times \sqrt{\frac{p(1-p)}{n}}
$$

and the lower bound is

$$
\hat{p}-1.96 \times \sqrt{\frac{p(1-p)}{n}}
$$

95\% Confidence Intervals

What does 95% confident mean?

- Confidence is based on the concept of repeated sampling.
- Suppose we took 1000 samples and built a 95% confidence interval from each.
- Then about 95% of these would contain the true parameter p.

95% Confidence Intervals

25 confidence intervals built from 25 samples where the true proportion is $p=0.88$. Only one of these did not capture the true proportion.

Example

Last class we talked about a sample of 1000 Americans where 88.7% said that they supported expanding solar power.

Find a 95% confidence interval for p.

Example

We decided during our last class that the Central Limit Theorem applies and that

$$
\mu_{\hat{p}}=\hat{p}=0.887
$$

and

$$
S E_{\hat{p}}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=0.010
$$

Example

Plugging these into our confidence interval,

$$
\begin{aligned}
& \hat{p} \pm 1.96 \times S E_{\hat{P}} \\
& \quad \rightarrow 0.887 \pm 1.96 \times 0.010 \\
& \quad \rightarrow 0.887 \pm 0.0196 \\
& \rightarrow(0.8674,0.9066)
\end{aligned}
$$

We can be 95% confident that the actual proportion of adults who support expanding solar power is between 86.7% and 90.7%.

More General Confidence Intervals

- Suppose we want to cast a wider net and find a 99% confidence interval.
- To do so, we must widen our 95% confidence interval.
- If we wanted a 90% confidence interval, we would need to narrow our 95% interval.

More General Confidence Intervals

We decided that the 95% confidence interval for a point estimate that follows the Central Limit Theorem is

$$
\text { point estimate } \pm 1.96 \times S E
$$

There are three components to this interval:
(1) the point estimate
(2) "1.96"
(3) the standard error

More General Confidence Intervals

- The point estimate and standard error won't change if we change our confidence level.
- 1.96 was based on capturing 95% of the data for our normal distribution.
- We will need to adjust this value for other confidence levels.

Consider the Following

If X is a normally distributed random variable, what is the probability of the value x being within 2.58 standard deviations of the mean?

Consider the Following

We want to know how often the Z-score will be between -2.58 and 2.58 :

$$
\begin{aligned}
P(-2.58<Z<2.58) & =P(Z<2.58)-P(Z<-2.58) \\
& =0.9951-0.0049 \\
& \approx 0.99
\end{aligned}
$$

So there is a 99% probability that X will be within 2.58 standard deviations of μ

99\% Confidence Intervals

With this in mind, we can create a 99% confidence interval:

$$
\text { point estimate } \pm 2.58 \times S E
$$

All we needed to do was change 1.96 in the 95% confidence interval formula to 2.58 .

General Confidence Intervals

Crucially, the area between $-z_{\alpha / 2}$ and $z_{\alpha / 2}$ increases as $z_{\alpha / 2}$ becomes larger.

What is α ?

For now, we will think of α (Greek letter alpha) as the chance that p is not in our interval.

$$
\alpha=1 \text { - confidence level }
$$

We call α the level of significance.

What is α ?

We can rework our formula for α to say that our confidence level is

$$
1-\alpha
$$

as a proportion, or

$$
(1-\alpha) \times 100 \%
$$

as a percent.
Over the next few slides, we will consider why we use the notation $z_{\alpha / 2}$.

General Confidence Intervals

- Using Z-scores and the normal model is appropriate when our point estimate is associated with a normal model.
- This is true when
(1) our point estimate is the mean of a variable that is itself normally distributed
(2) the Central Limit Theorem holds for our point estimate

When a normal model is not a good fit, we will use alternative distributions. These will come up in later chapters.

General Confidence Intervals

If a point estimate closely follows a normal model with standard error $S E$, then a confidence interval for the population parameter is

$$
\text { point estimate } \pm z_{\alpha / 2} \times S E
$$

where $z_{\alpha / 2}$ corresponds to the desired confidence level.

General Confidence Intervals

In this general setting, the upper bound for the interval is

$$
\text { point estimate }+z_{\alpha / 2} \times S E
$$

and the lower bound is

$$
\text { point estimate }-z_{\alpha / 2} \times S E
$$

Margin of Error

In a confidence interval,

$$
\text { point estimate } \pm z_{\alpha / 2} \times S E
$$

we refer to $z_{\alpha / 2} \times S E$ as the margin of error.

Margin of Error

- The margin of error is the maximum amount of error that we allow from the point estimate.
- That is, this is the furthest distance from the point estimate that we consider to be plausible.
- We expect the true parameter to be within this error, limited by the confidence level.

Margin of Error

Margin of error will decrease when

- n increases.
- $1-\alpha$ decreases.
- $\alpha / 2$ increases.
- $z_{\alpha / 2}$ decreases.

Margin of error will increase under opposite conditions.

Critical Value

In a confidence interval,

$$
\text { point estimate } \pm z_{\alpha / 2} \times S E
$$

we refer to $z_{\alpha / 2}$ as the critical value.

Finding $z_{\alpha / 2}$

We want to select $z_{\alpha / 2}$ so that the area between $-z_{\alpha / 2}$ and $z_{\alpha / 2}$ in the standard normal distribution, $N(0,1)$, corresponds to the confidence level.

Let c be the desired confidence level. We want to find $z_{\alpha / 2}$ such that

$$
c=P\left(-z_{\alpha / 2}<Z<z_{\alpha / 2}\right)
$$

Finding $z_{\alpha / 2}$

Rewriting this,

$$
\begin{aligned}
c & =P\left(-z_{\alpha / 2}<Z<z_{\alpha / 2}\right) \\
& =1-P\left(Z>z_{\alpha / 2}\right)-P\left(Z<-z_{\alpha / 2}\right)
\end{aligned}
$$

Since $Z \sim N(0,1)$ is symmetric,

$$
P\left(Z>z_{\alpha / 2}\right)=P\left(Z<-z_{\alpha / 2}\right)
$$

Finding $z_{\alpha / 2}$

So

$$
\begin{aligned}
c & =P\left(-z_{\alpha / 2}<Z<z_{\alpha / 2}\right) \\
& =1-P\left(Z>z_{\alpha / 2}\right)-P\left(Z<-z_{\alpha / 2}\right) \\
& =1-P\left(Z<-z_{\alpha / 2}\right)-P\left(Z<-z_{\alpha / 2}\right) \\
& =1-2 P\left(Z<-z_{\alpha / 2}\right)
\end{aligned}
$$

Finding $z_{\alpha / 2}$

Solving for $P\left(Z<-z_{\alpha / 2}\right)$, we find

$$
\frac{1-c}{2}=\frac{\alpha}{2}=P\left(Z<-z_{\alpha / 2}\right)
$$

Hence $z_{\alpha / 2}$!
Since c is some number, say 0.90 (a 90% confidence level), we now have an easy way to find $z_{\alpha / 2}$!

Example: Finding $z_{\alpha / 2}$

Suppose you want to find a 99% confidence interval. Find $z_{\alpha / 2}$.
We know that

$$
\frac{1-c}{2}=P\left(Z<-z_{\alpha / 2}\right)
$$

and that a 99% confidence level translates to $c=0.99$.

Example: Finding $z_{\alpha / 2}$

So

$$
\begin{aligned}
P\left(Z<-z_{\alpha / 2}\right) & =\frac{1-c}{2} \\
& =\frac{1-0.99}{2} \\
& =0.005
\end{aligned}
$$

Using software to find this percentile, $-z_{\alpha / 2}=-2.58$ (so $z_{\alpha / 2}=2.58$). This is what the textbook told us earlier!

Example

Recall our sample of 1000 adults, 88.7% of whom were found to support the expansion of solar energy. Find a 90% confidence interval for the proportion. Note that we have already verified conditions for normality.

First, our point estimate is $\hat{p}=0.887$.

Example

Now we need to find $z_{\alpha / 2}$. Our confidence level is $c=0.90$.

$$
\begin{aligned}
P\left(Z<-z_{\alpha / 2}\right) & =\frac{1-c}{2} \\
& =\frac{1-0.9}{2} \\
& =0.05
\end{aligned}
$$

Using R, we find $-z_{\alpha / 2}=-1.65$ (so $\left.z_{\alpha / 2}=1.65\right)$.

Example

Then the 90% confidence interval can be computed as

$$
\hat{p} \pm 1.65 \times S E \quad \longrightarrow \quad 0.887 \pm 1.65 \times 0.010
$$

which is the interval $(0.8705,0.9035)$.
Thus we are 90% confident that 87.1% to 90.4% of American adults support the expansion of solar power.

Confidence Interval for a Single Proportion

There are four steps to constructing these confidence intervals:
(1) Identify \hat{p}, n, and the desired confidence level.
(2) Verify that \hat{p} is approximately normal

- Use the success-failure condition with \hat{p} to verify the Central Limit Theorem.
(3 Compute $S E$ using \hat{p} and find $z_{\alpha / 2}$, using these values to construct your interval.
(1) Interpret your confidence interval in the context of the problem.

Example: Ebola

After a doctor contracted Ebola in New York City, a poll of 1042 New Yorkers found that 82% were in favor of a mandatory quarantine for anyone who'd come in contact with with an Ebola patient.

We will walk through developing and interpreting a 95% confidence interval for the proportion of New Yorkers who favor mandatory quarantine.

Example: Ebola

First, we need to find the point estimate and confirm that a normal model is appropriate.

$$
\hat{p}=0.82
$$

This is the given proportion of polled New Yorkers who favored mandatory quarantine.

Example: Ebola

To confirm that a normal model is appropriate, we check our success-failure condition using the plug-in approach:

$$
n \hat{p}=1042 \times 0.82=853.62 \geq 10
$$

and

$$
n(1-\hat{p})=1042 \times(1-0.82)=187.38 \geq 10
$$

Example: Ebola

Since the normal model is appropriate, we can move on to calculating the standard error for \hat{p} based on the Central Limit Theorem. We will again use the plug-in approach.

$$
S E_{\hat{p}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=\sqrt{\frac{0.82(1-0.82)}{1041}}=0.012
$$

Example: Ebola

Now we want to find our critical value $z_{\alpha / 2}$ for our 95% confidence interval. In this case,

$$
\alpha=1-\text { confidence level }=0.05
$$

Example: Ebola

Then, using software, $z_{\alpha / 2}=z_{0.025}=1.96$ and our confidence interval is

$$
\begin{aligned}
\hat{p} \pm z_{\alpha / 2} \times S E & =0.82 \pm 1.96 \times 0.012 \\
& =0.82 \pm 0.0235
\end{aligned}
$$

or $(0.796,0.844)$.

Example: Ebola

Finally, to interpret the interval ($0.796,0.844$):
We can be 95% confident that the proportion of New York adults in October 2014 who supported a quarantine for anyone who had come into contact with an Ebola patients was between 0.796 and 0.844 .

Example: Ebola

When we say that we are 95% confident, we mean:
If we took many such samples and computed a 95% confidence interval for each

- About 95% of those intervals would contain the actual proportion.
- This proportion is of New York adults who supported a quarantine for anyone who has come into contact with an Ebola patient.

Interpreting Confidence Intervals

Whenever we interpret a confidence interval,
(1) The statement should be about the population parameter of interest.
(2) We do not want to talk about the probability that that interval captures the population parameter.

- This is an important technical detail that has to do with our definition of " 95% confident".

Interpreting Confidence Intervals

Whenever we interpret a confidence interval,
(3) The confidence interval says nothing about individual observations or point estimates.
(1) These methods apply to sampling error and ignore bias entirely!

- If we are systematically over- or under-estimating, confidence intervals will not address this problem.

Example: Interpreting Confidence Intervals

Consider the 90% confidence interval for the solar energy survey: 87.1% to 90.4%. If we ran the survey again, can we say that we're 90% confident that the new survey's proportion will be between 87.1% and 90.4% ?

Example: Interpreting Confidence Intervals

No! Confidence intervals don't tell us anything about future point estimates.

Our point estimate will change so our confidence interval will change.

Sample Size Calculation

Exactly how many observations do we need to get an accurate estimate?

Example: Sample Size Calculation

Suppose a manufacturer claims that he is 95% confident that the proportion of defective units coming from his factory is 2%. We want to examine this claim at a margin of error no greater than 0.5%. How many samples do we need?

Example: Sample Size Calculation

For our proportion, we will consider a Bernoulli distribution with $p=0.02$. We will calculate the n for this distribution. Then

$$
\mu=p=0.02
$$

and

$$
s d=\sqrt{p(1-p)}=\sqrt{0.02 \times 0.98}=0.14
$$

Example: Sample Size Calculation

The margin of error (MoE) is

$$
\begin{aligned}
\mathrm{MoE} & =z_{\alpha / 2} \times S E \\
& =z_{0.05 / 2} \times \frac{s d}{\sqrt{n}} \\
& =1.96 \times \frac{0.14}{\sqrt{n}}
\end{aligned}
$$

Example: Sample Size Calculation

Note that this is a 95% confidence claim and we want the margin of error (MoE) to be ≤ 0.005. So

$$
\begin{aligned}
& 0.005 \geq M o E \\
& 0.005 \geq 1.96 \times \frac{0.14}{\sqrt{n}}
\end{aligned}
$$

Example: Sample Size Calculation

Solving for n,

$$
n \geq\left(1.96 \times \frac{0.14}{0.005}\right)^{2}=3011.814
$$

- Since $n \geq 3011.814$ and we need a whole number of samples, we will always round up!
- We will need at least 3012 samples to achieve a margin of error of no more than 0.5%.

Sample Size Calculations

In general, for a confidence interval,

$$
n \geq\left(z_{\alpha / 2} \times \frac{s d}{M o E}\right)^{2}
$$

where $M o E$ is the desired maximum margin of error. We will always round n up to the nearest integer.

