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Example: Insurance Deducibles

Suppose a health insurance company found that 70% of the people
they insure stay below their deductible in any given year.

Each of these people can be thought of as a single trial in a study.

We label a person a ”success” if their healthcare costs do not
exceed the deductible.

P (success) = p = 0.7
P (failure) = 1− p = 0.3
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The Bernoulli Distribution

When an individual trial only has two possible outcomes it is
called a Bernoulli random variable.

These outcomes are often labeled as success or failure.

These labels can be completely arbitrary!

We called ”not hitting the deductible” a ”success”, but we could
just as well have labeled that the ”failure”.
The framework we use to talk about the Bernoulli distribution does
not depend on the label we use.
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The Bernoulli Distribution

Bernoulli random variables are often denoted as 1 for a success and 0

for a failure.

This makes data entry easy and is mathematically convenient.

Suppose we observe ten trials:

1, 1, 1, 0, 1, 0, 0, 1, 1, 0
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The Sample Proportion

The sample proportion, p̂, will be the sample mean for these
observations:

p̂ =
# of successes

# of trials

=
1 + 1 + 1 + 0 + 1 + 0 + 0 + 1 + 1 + 0

10

= 0.6
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The Bernoulli Random Variable

It is useful to think about a Bernoulli random variable as a random
process with only two outcomes: a success or failure (or yes/no).

Then we code a success as 1 and a failure as 0.

These are just numbers, so we can define the mean and variance.
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The Bernoulli Random Variable

If X is a random variable that takes the value 1 with probability of
success p and 0 with probability 1− p, then X is a Bernoulli random
variable with mean

µ = p

and variance
σ2 = p(1− p).
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The Bernoulli Distribution

Remember that we can estimate p using p̂ = x̄.

We can use this to estimate the mean the variance.

For our insurance deductible example, we found p̂ = 0.6

So we can estimate

µ̂ = p̂ = 0.6

and
σ̂2 = p̂(1− p̂) = 0.6 ∗ 0.4 = 0.24
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Example

Derive the mean and variance of a Bernoulli random variable.
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Example

Because there are only 2 possible outcomes, the Bernoulli distribution
describes a discrete random variable.

Therefore, We can start with its probability distribution table:

x 0 1

P (x) p (1− p)
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Example

Then for the expected value,

x 1 0 Total

P (x) p (1− p)
xP (x) p 0 p

So the expected value is (as expected) p!
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Example

And for the variance,

x 1 0 Total

P (x) p (1− p)
xP (x) p 0 p

x− E(x) 1− p −p
[x− E(x)]2 (1− p)2 p2

P (x)[x− E(x)]2 p(1− p)2 (1− p)p2 p(1− p)2 + (1− p)p2
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Example

Then

V ar(X) = p(1− p)2 + (1− p)p2

= p− 2p2 + p3 + p2 − p3

= p− 2p2 + p2

= p− p2

= p(1− p)

Which is the Var(X) we wanted!
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The Binomial Distribution

The binomial distribution is used to describe the number of
successes in a fixed number of trials.

This is an extension of the Bernoulli distribution.

We check for a success or failure repeatedly over multiple trials.

Each individual trial can be described with a Bernoulli
distribution.
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Example: Insurance

Let’s return to the insurance agency where 70% of individuals do
not exceed their deductible.

Suppose the insurance agency is considering a random sample of
four individuals they insure.

What is the probability that exactly one of them will exceed the
deductible and the other three will not?
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Example

Let’s call the four people Ariana (A), Brittany (B), Carlton (C), and
Damian (D). Consider a scenario where one person exceeds the
deductible:

P (A = exceed, B = not, C = not, D = not)

= P (A = exceed)× P (B = not)× P (C = not)× P (D = not)

= (0.3)× (0.7)× (0.7)× (0.7)

= (0.3)1 × (0.7)3

= 0.103
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Example

But there are three other scenarios!
1 Brittany could have been the one to exceed the deductible.
2 ... or Carlton could have.
3 ... or Damian.

In each of these cases, the probability is (0.7)3(0.3)1.
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Example

These four scenarios consist of all the possible ways that exactly
one of these four people could have exceeded the deductible.

So the total probability is

4× (0.7)3 × (0.3)1 = 0.412.

This is an example of a scenario where we would use a binomial
distribution.
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The Binomial Distribution

We would like to determine the probabilities associated with the
binomial distribution using n, k, and p.

We would like a nice formula for this.
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Example: Building to Binomial

Let’s return to our insurance example.

There were four people who could have been the single failure.

Each scenario has the same probability.

So the final probability was

[# of scenarios]× P (single scenario)
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Example: Building to Binomial

The first component of this equation is the number of ways to
arrange k = 3 successes among n = 4 trials.

The second is the probability of any one of the scenarios.

These four scenarios are equally probable.
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Building to Binomial

Consider P (single scenario) with k successes and n− k failures in
n trials.

We know how to handle this!

We will use the multiplication rule for independent events.
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Probability for a Single Scenario

Applying the multiplication rule for independent events,

P (single scenario) = P (k successes)× P (n− k failures)

= p× · · · × p× (1− p)× · · · × (1− p)
= pk × (1− p)n−k

This is our general formula for P (single scenario).
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Number of Ways to Arrange Successes

The number of ways to arrange k successes and n− k failures is(
n

k

)
=

n!

k!(n− k)!

The expression
(
n
k

)
is read ”n choose k”. This is the number of ways to

choose k successes in n trials.

What about the exclamation point?
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Factorial Notation

The exclamation point in n! denotes a factorial.

0! = 1

1! = 1

2! = 2× 1

3! = 3× 2× 1

4! = 4× 3× 2× 1

...

n! = n× (n− 1)× (n− 2)× · · · × 3× 2× 1
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Example

We can use this to double check our insurance deductible problem.

Recall that we decided that there were four possible ways to get 3
successes (not exceeding) among 4 people (trials).(

4

3

)
=

4!

3!(4− 3)!

=
4× 3× 2× 1

(3× 2× 1)× (1)

= 4

which is just what we decided before!
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The Binomial Distribution

Suppose X ∼ Bin(n, p). The probability of a single trial being a
success is p. Then the probability of observing exactly k successes in n
independent trials is given by

P (X = k) =

(
n

k

)
pk(1− p)n−k
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The Binomial Distribution

The expected value (mean) is

E(X) = µ = np

and the variance is

V ar(X) = σ2 = np(1− p)

If p ≈ (1− p), then the binomial distribution is symmetric.
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The Binomial Distribution

We say that X follows a binomial distribution with number of trials
n and probability of success p if

1 The number of trials is fixed = n.

2 The trials are independent.

3 There are two possible outcomes, success/failure.

4 The probability of success is known and fixed = p.

We denote this X ∼ Bin(n, p)
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Example: Cars at UCR

In a survey conducted at UCR, it is reported that 38% of students
owned a car. A random sample of 20 STAT 100A students is selected.
Let X be the number of students in the sample who own a car. What
is the distribution of X?
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Example: Cars at UCR

In a survey conducted at UCR, it is reported that 38% of students
owned a car. A random sample of 20 STAT 100A students is selected.
Let X be the number of students in the sample who own a car. What
is the distribution of X?

1 n = 20 students, so the number of trials is fixed.

2 We have a random sample, so the trials are independent.

3 Success = car

Failure = no car

4 p = P (car) = 0.38

So X ∼ Bin(n = 20, p = 0.38)
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Example: Cars at UCR

What is the probability that none of the 20 students own a car?
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Example: Cars at UCR

What are the mean and variance of X, the number of students in the
sample who own a car?
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Computing Binomial Probabilities

1 Check that the (binomial)model is appropriate.

2 Identify n, p, and k.

3 Determine the probability.

4 Interpret the results.

When doing calculations by hand, cancel out as many terms as possible
in the binomial coefficient!
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Example: Cars at UCR

What is the probability that no more than 2 students own a car?
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Example: Cars at UCR

What is the probability that fewer than two students own a car?
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Example: Cars at UCR

What is the probability that more than 2 students own a car?
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Normal Approximation to the Binomial Distribution

Sometimes when n is large, the binomial formula can be difficult
to use.

In these cases, we may be able to use the normal distribution to
estimate binomial probabilities.
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Example

Approximately 15% of the US population smokes cigarettes.

A local government commissioned a survey of 400 randomly
selected individuals.

The survey found that only 42 of the 400 participants smoke
cigarettes.

If the true proportion of smokers in the community was really
15%, what is the probability of observing 42 or fewer smokers in a
sample of 400 people?
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Example

First, we check that this is a binomial setting:

1 n = 400 community members

2 This is a random sample, so the trials are independent.

3 We define Success = smoker and Failure = nonsmoker.

4 p = P (smoker) = 0.15

So this is a binomial distribution.

We are interested in k = 42 or fewer.
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Example

Let X be the number of smokers in a community. We want to know

P (X ≤ 42)

which is the same as

P (X = 42 or X = 41 or X = 40 or . . . or X = 1 or X = 0)

= P (X = 42) + P (X = 41) + · · ·+ P (X = 1) + P (X = 0)

We could calculate each of the 43 probabilities individually by using
our binomial formula and adding them together...
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Example

If we were to do this, we would find

P (X = 42) + P (X = 41) + · · ·+ P (X = 1) + P (X = 0) = 0.0054

That is, if the true proportion of smokers in the community is p = 0.15,
then the probability of observing 42 or fewer smokers in a sample of
n = 400 is 0.0054.
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Normal Approximation to the Binomial Distribution

...but why would we do this if we don’t have to?

Calculating probabilities for a range of values is much easier using
the normal model.

We’d like to use the normal model in place of the binomial
distribution.
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Normal Approximation to the Binomial Distribution

Surprisingly, this works quite well as long as

np > 10

and
n(1− p) > 10

Note that both of these conditions must hold !
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Normal Approximation to the Binomial Distribution

If these conditions are met, then X ∼ Bin(n, p) is well-approximated
by a normal model with

E(X) = µ = np

and
V ar(X) = σ2 = np(1− p).

Section 4.3 August 14, 2019 46 / 60



Normal Approximation to the Binomial Distribution

Each histogram shows a binomial distribution with p = 0.1.
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Example

Can we use the normal approximation to estimate the probability of
observing 42 or fewer smokers in a sample of 400, if the true proportion
of smokers is p = 0.15?
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Example

Can we use the normal approximation to estimate the probability of
observing 42 or fewer smokers in a sample of 400, if the true proportion
of smokers is p = 0.15?

From our previous example, we verified that the binomial model is
reasonable. Now,

np = 400× 0.15 = 60

and
n(1− p) = 400× 0.85 = 340

so both are at least 10 and we may use the normal approximation.
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Example

For the normal approximation,

µ = np = 400× 0.15 = 60

and
σ =

√
np(1− p) =

√
400× 0.15× 0.85 = 7.14
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Example

We want to find the probability of observing 42 or fewer smokers using
or N(µ = 60, σ = 7.14) model.

We start by finding our Z-score:

z =
x− µ
σ

=
42− 60

7.14
= −2.52
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Example

Then, using R, the left-tail area is 0.0059.

When we calculated this using the binomial distribution, the true
probability was 0.0054.

So this is a pretty good approximation!
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Breakdown of the Normal Approximation

The normal approximation to the binomial distribution tends to
perform poorly when estimating the probability of a small range of
counts.

This is true even when np > 10 and n(1− p) > 10
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Breakdown of the Normal Approximation

Suppose we wanted to compute the probability of observing 49,
50, or 51 smokers in 400 when p = 0.15.

We know that np = 60 > 10 and n(1− p) = 340, so we might want
to apply the normal approximation and use the range 49 to 51.

But this time the approximation and the binomial solution are
noticeably different!

Binomial: 0.0649
Normal: 0.0421
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Why Does This Breakdown Happen?

The binomial probability is shown outlined in red; the normal
probability shaded in blue.
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Can We Fix It? Improving the Normal Approximation
for Intervals

We can usually improve this estimation by modifying our cutoff values.

Cutoff values for the left side should be reduced by 0.5.

Cutoff values for the right side should be increased by 0.5.
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Example

Suppose we wanted to compute the probability of observing 49,
50, or 51 smokers in 400 when p = 0.15.

Let’s try this again with our modification.

For our normal distribution, we used a N(60, 7.14) model.

Our upper value is 51, adjusted to 51 + 0.5 = 51.5.

Our lower value is 49, adjusted to 49− 0.5 = 48.5.
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Example

Then

z1 =
x1 − µ
σ

=
51.5− 60

7.14
= −1.190476

and

z2 =
x2 − µ
σ

=
48.5− 60

7.14
= −1.610644
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Example

Now, using R,

P (z2 < Z < z1) = P (Z < z1)− P (Z < z2)

= 0.1169297− 0.05362867

= 0.0633
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Example

P (49 ≤ X ≤ 51)

Binomial
Normal Approx Normal Approx

(Adjusted) (Unadjusted)

0.0649 0.0633 0.0421

Making those small adjustments makes a significant difference!
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