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Bayes’ Theorem

Bayes’ Theorem will help us more easily calculate

P (statement about variable 1 | statement about variable 2)

when we have information about

P (statement about variable 2 | statement about variable 1).
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Example: Mammograms

About 0.35% of women over 40 will develop breast cancer in any
given year.

In about 11% of patients with breast cancer, a mammogram test
gives a false negative.

This means that the test indicates no cancer even though cancer is
present.

In about 7% of patients without breast cancer, the test gives a
false positive.

This is when the test says that there is cancer when actually there
is not.
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Example: Mammograms

If we tested a random woman over 40 for breast cancer using a
mammogram and the test came back positive for cancer, what is the
probability that the patient actually has breast cancer?
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Example: Mammograms

We know that 11% of the time, a mammogram gives a false
negative.

We can use the complement to find the probability of testing
positive for a woman with breast cancer:

1− 0.11 = 0.89

But we want the probability of cancer given a positive test result.
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Example: Mammograms

We can break this probability down into its component parts

P (BC | mammogram+) =
P (BC and mammogram+)

P ( mammogram+)

where BC denotes breast cancer and mammogram+ denotes a positive
breast cancer screening.
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Example: Mammograms

We can construct a tree diagram from these probabilities:
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Example: Mammograms

Returning to our desired probability,

P (BC | mammogram+) =
P (BC and mammogram+)

P ( mammogram+)
,

the probability that a patient has cancer and the mammogram is
positive is

P (BC and mammogram+) = P (mammogram+ | BC)× P (has BC)

= 0.89× 0.0035 = 0.00312
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Example: Mammograms

The probability that the mammogram is positive is

P (mammogram+)

= P (mammogram+ and BC) + P (mammogram+ and no BC)

= P (BC)P (mammogram+ | BC) + P (no BC)P (mammogram+ | no BC)

= 0.0035× 0.89 + 0.9965× 0.07 = 0.07288
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Example: Mammograms

Plugging these back in,

P (BC | mammogram+) =
P (BC and mammogram+)

P ( mammogram+)

=
0.00312

0.07288
= 0.0428

Even if a patient has a positive mammogram screening, there is still
only a 4% chance of breast cancer!

This is why doctors usually run several tests before deciding that a
person has a (relatively) rare disease or condition.
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Law of Total Probability

Notice that the denominator of the previous equation was

P (mammogram+ and BC) + P (mammogram+ and no BC)

= P (BC)P (mammogram+ | BC) + P (no BC)P (mammogram+ | no BC)

This is the sum of the probabilities for each positive screening scenario.
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Law of Total Probability

For two events A and B, the Law of Total Probability states

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|Ak)P (Ak)

where A1 . . . Ak are the k possible outcomes for event A.
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Bayes’ Theorem

Consider the following conditional probability for variable 1 and
variable 2:

P (outcome A1 of variable 1 | outcome B of variable 2)

Bayes’ Theorem states that this conditional probability can be
identified as the following fraction

P (B|A1)P (A1)

P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|Ak)P (Ak)
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Bayes’ Theorem

Bayes’ Theorem is a generalization of what we’ve been doing with tree
diagrams.

The numerator identifies the probability of getting both A1 and B.

The denominator is the marginal probability of getting B.

This bottom component of the fraction looks complicated since we
have to add up probabilities from all of the different ways to get B.
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Bayes’ Theorem

To apply Bayes’ Theorem correctly, there are two preparatory steps:

1 Identify the marginal probabilities of each possible outcome of the
first variable.

P (A1), P (A2), . . . , P (Ak)

2 Identify the probability of the outcome B, conditioned on each
possible scenario for the first variable.

P (B|A1), P (B|A2), . . . , P (B|Ak)

When each of these has been identified, they can be plugged into
Bayes’ Theorem.
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Bayes’ Theorem

Bayes’ Theorem tends to be a good option when there are so many
scenarios that drawing a tree diagram would be very complex.

Each probability is found and identified in the same way as when
creating a tree diagram.

Unless specifically asked to use either a tree diagram or Bayes’
Theorem, you may use whichever method you prefer.
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Monty Hall Problem

The Monty Hall problem comes from an old game show. There are
three doors. Behind one of the doors is a car. Behind the other two
doors there are goats. The goal is to win the car.
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Monty Hall Problem

You begin by choosing a door. The host then opens one of the other
two doors, always such that the opened door reveals a goat.
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Monty Hall Problem

You then have the option to stay with your original choice or switch to
the remaining unopened door.

Would you switch or stay? Does it matter?
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Monty Hall Problem

Intuition suggests that there is a 50% chance of each of the remaining
doors contain the car.

We will examine this using (1) a visual and (2) Bayes’ Theorem.
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Monty Hall Problem: Visual

The order of the doors doesn’t matter, so for convenience we suppose
that we start by choosing Door 1. The host always shows us a door
with no goat. Let’s see what happens in each scenario:

Door 1 Door 2 Door 3 Stay Switch

Goat Goat Car Lose Win
Goat Car Goat Lose Win
Car Goat Goat Win Lose

2/3 of the time, switching leads to a win!
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Monty Hall Problem: Bayes’ Theorem

Let DA be the event that Door A has a car behind it, DB the event
that Door B has a car behind it, and DC the event that Door C has a
car behind it. Let HB be the event that the host opens Door B.
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Monty Hall Problem: Bayes’ Theorem

Suppose we choose Door A. We want to know

P (DA|HB) =
P (DA and HB)

P (HB)

or the probability that the car is behind Door A, our original choice,
given that the host opened Door B. This is the probability that we win
when we stay.
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Monty Hall Problem: Bayes’ Theorem

First,

P (DA and HB) = P (HB|DA)P (DA)

=
1

2
× 1

3

=
1

6

Why does P (HB|DA) = 1/2?
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Monty Hall Problem: Bayes’ Theorem

Then we need to find P (HB). Using the Law of Total Probability,

P (HB) = P (HB|DA)P (DA) + P (HB|DB)P (DB) + P (HB|DC)P (DC)

=
1

2
× 1

3
+ 0× 1

3
+ 1× 1

3

=
1

6
+ 0 +

1

3

=
1

2
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Monty Hall Problem: Bayes’ Theorem

Plugging these back into our equation for Bayes’ Theorem,

P (DA|HB) =
P (DA and HB)

P (HB)

=
1

6

/
1

2

=
1

3

So the probability of winning if we stay with our original door is 1/3!
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Sampling From a Small Population

Usually we sample only a very small fraction of the population.

However, we may occasionally sample more than 10% of the
population without replacement.

Without replacement means we do not have a chance of sampling
the same cases twice.
Think back to the raffle drawing: without replacement is when we
pull 10 raffle tickets without putting any of those tickets back.

This can be important for how we analyze the sample.
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Example: Sandwiches

Suppose we have

Two types of bread.

Four types of filling.

Three different condiments.

Assume we use only one of each category.

How many different types of sandwiches can we make?
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Example: Sandwiches

We can visualize this using a tree diagram. Let’s do this on the board.
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Example: Sandwiches

We can also calculate the number of different possible sandwiches
directly.

First, we choose one of two types of bread.

For each bread choice, we can choose one of four filling types.

This makes 2× 4 = 8 combinations.

Then we choose one of three condiments.

Each of our 8 combinations can branch into 3 further options, for a
total of 8× 3 = 24 combinations.

Therefore, there are 2 ∗ 4 ∗ 3 = 24 combinations.
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Example: Sandwiches

Now that we know the possible number of sandwiches, we can calculate
the probability of any particular sandwich.

If we grab bread, filling, and a condiment at random, what’s the
probability that we get a cheese sandwich on rye with mayonnaise?

This is one of 24 combinations, so P (rye and cheese and mayo) = 1/24.
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Example: Sandwiches

If we chose a sour dough and then grabbed filling and a condiment at
random, what’s the probability that we put cheese and mustard on our
sandwich?

Now we want to know P (cheese and mustard — sourdough).

P (cheese and mustard | sourdough) =
P (cheese and mustard and sourdough)

P (sourdough)
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Example: Sandwiches

Now, cheese and mustard and sourdough is one particular combination
out of our eight possible combinations so

P (cheese and mustard and sourdough) = 1/24

and sourdough is one of two possible breads, so

P (sourdough) = 1/2.
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Example: Sandwiches

If we chose a sour dough and then grabbed filling and a condiment at
random, what’s the probability that we put cheese and mustard on our
sandwich?

Plugging in,

P (cheese and mustard | sourdough) =
P (cheese and mustard and sourdough)

P (sourdough)

=
1

24

/
1

2

= 1/12
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Example

Suppose your discussion TA asks 3 questions and calls on people at
random to answer them. Assume that he will not call on the same
person twice.

What is the probability that you will not be selected?
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Example

Suppose there are 25 people in your discussion.

For the first question, your TA will choose 1 of 25 students.

You have a 24/25 = 0.960 chance of not being selected.

For the second question, your TA will choose 1 of the 24 people
who have not yet been called on.

You have a 23/24 = 0.0.958 chance of not being selected.

For the final question, your TA will choose 1 of the 23 people who
have not yet been called on.

You have a 22/23 = 0.957 chance of not being selected.

Section 3.3 August 6, 2019 37 / 63



Example

Then, based on the General Multiplication Rule

P (Q1 = not selected and Q2 = not selected and Q3 = not selected)

=
24

25
× 23

24
× 22

23

=
22

25
= 0.88
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Example

The three probabilities we computed were actually one marginal
probability:

P (Q1 = not selected)

and two conditional probabilities:

P (Q2 = not selected | Q1 = not selected)

P (Q3 = not selected | Q1 = not selected, Q2 = not selected).

Using the General Multiplication Rule, the product of these three
probabilities is the probability of not being picked in 3 questions.
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Small Sample Probabilities

When it comes to small samples...

If we sample from a small population without replacement, we
no longer have independence between our observations.

If we sample from a small population with replacement, we have
independent observations.

The key to working with small sample probabilities is to determine
which sampling method was used.
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Example: Socks

In your sock drawer you have 4 blue, 5 grey, and 3 black socks. You
grab 2 socks at random and put them on.

Find the probability you end up wearing matching socks.

Section 3.3 August 6, 2019 41 / 63



Example: Socks

Find the probability you end up wearing matching socks.

There are three ways to get matching socks:

1 P (blue and blue) = 4/12× 3/11 = 0.0909

2 P (grey and grey) = 5/12× 4/11 = 0.1515

3 P (black and black) = 3/12× 2/11 = 0.0455
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Example: Socks

Find the probability you end up wearing matching socks.

We want to find

P (matching socks)

= P (blue and blue OR grey and grey OR black and black)

= P (blue and blue) + P (grey and grey) + P (black and black)

= 0.0909 + 0.1515 + 0.0455

= 0.2879.
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Random Variables

We often model processes using what’s called random variables.

Random variables give us a mathematical framework for working
with real-world variables.

This allows us to make predictions and statistical inference.
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Example: Textbooks

Two books are assigned for a statistics class: a textbook and its
corresponding study guide. The university bookstore determined that

20% of enrolled students do not buy either book

55% buy the textbook only

25% buy both books

If there are 100 students enrolled, how many books should the
bookstore expect to sell to this class?
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Example: Textbooks

If there are 100 students enrolled, how many books should the
bookstore expect to sell to this class?

Around 100× 0.20 = 20 students will buy neither book (0 books
sold).

Around 100× 0.55 = 55 students will buy the textbook only (55
books sold).

Around 100× 0.25 students will buy both books (50 books sold).

The bookstore should expect to sell about 55 + 50 = 105 books for this
class.
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Example: Textbook

Now suppose the textbook costs $137 and the study guide $33. How
much revenue should the bookstore expect from this class of 100
students?

A student who buys only the textbook spends $137.

We expected about 55 students to buy the textbook only, for a total
of $137× 55 = $7535

A student who buys both books spends $137 + $33 = $170

We expected about 25 students to buy both books, for a total of
$170× 25 = $4250

Section 3.4 August 6, 2019 47 / 63



Example: Textbook

Now suppose the textbook costs $137 and the study guide $33. How
much revenue should the bookstore expect from this class of 100
students?

In total, the bookstore can expect $7535 + $4250 = $11785 from
this class each term.

However, some sampling variability will cause this number to differ
slightly each term.
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Expectation

We call a variable or process with a numerical outcome a random
variable.

We usually represent random variables with capital letters such as
X, Y , or Z.

The amount of money a single student will spend on her statistics
books is a random variable. We might represent it by X.
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Expectation

The possible outcomes of X are labeled with a corresponding
lower case letter x and subscripts.

For our textbook example, we would write

x1 = $0
x2 = $137
x3 = $170
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Expectation

The corresponding probabilities may be written as

P (X = x1) = P (X = $0) = 0.20
P (X = x2) = P (X = $137) = 0.55
P (X = x3) = P (X = $170) = 0.25
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Expectation

The probability distribution for X looks like

i 1 2 3 Total

xi $0 $137 $170 -
P (X = xi) 0.20 0.55 0.25 1.00
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Expectation

Previously, we computed the average outcome of X as $117.85.

We call this average outcome the expected value of X, denoted
E(X).

The expected value of a random variable is computed by adding
each outcome weighted by its probability.

E(X) = 0× P (X = 0) + 137× P (X = 137) + 170× P (X = 170)

= 0× 0.20 + 137× 0.55 + 170× 0.25

= 117.85
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Expected Value of a Discrete Random Variable

If X takes outcomes x1, . . . , xk with probabilities
P (X = x1), . . . , P (X = xk), the expected value of X is the sum of each
outcome multiplied by its corresponding probability:

E(X) = x1 × P (X = x1) + · · ·+ xk × P (X = xk)

=

k∑
i=1

xiP (X = xi)
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Expected Values

The expected value for a random variable represents the average
outcome.

For example, E(X) = 117.85 represents the average amount the
bookstore expects to make from a single student.

You will occasionally see the expected value denoted as µ. We will
explore how this relates to the true/population mean as we go.
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Expected Value of a Continuous Random Variable

We can also calculate the expected value for a continuous random
variable.

This requires a little bit of calculus, so we won’t require it for this
course.

If you are familiar with Riemann sums and integrals, this is a
similar transition from discrete to continuous.
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Variability in Random Variables

For the bookstore looking at textbook revenues, it might also be of
interest to know about the variability in revenue.

The variance and standard deviation can be used to describe the
variability of a random variable.

We talked about calculating variance as the sum of the squared
deviances from the mean.
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Variability in Random Variables

For the bookstore looking at textbook revenues, it might also be of
interest to know about the variability in revenue.

Calculating a variance for a random variable is similar, but now
we weight each squared deviance by its corresponding probability.

This is somewhere in between the variance formula we talked
about in Chapter 2 and the weighting we used for the expected
value.

We again calculate the standard deviation as the square root of
the variance.
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Variance Formula

If X takes outcomes x1, . . . , xk with probabilities
P (X = x1), . . . , P (X = xk) and expected value µ = E(X), then the
variance of X, denoted by V ar(X) or σ2, is

V ar(X) = (x1 − µ)2 × P (X = x1) + · · ·+ (xk − µ)2 × P (X = xk)

=

k∑
j=1

(xj − µ)2P (X = xj)

The standard deviation of X, labeled sd(X) or σ, is the square root of
the variance.
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Example: Textbooks

Compute the expected value, variance, and standard deviation of X,
the revenue of a single statistics student for the bookstore.
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Example: Textbooks

Compute the expected value of X, the revenue of a single
statistics student for the bookstore.

It may be helpful to modify our probability distribution table to
include additional calculations:

i 1 2 3 Total

xi $0 $137 $170 -
P (X = xi) 0.20 0.55 0.25 1.00
xi × P (X = xi) 0 75.35 42.50 117.85

This total is our expected value, E(X) = $117.85.
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Example: Textbooks

Compute the variance and standard deviation of X.

We will continue to modify our probability distribution table to include
other calculations:

i 1 2 3 Total

xi $0 $137 $170
P (X = xi) 0.20 0.55 0.25
xi × P (X = xi) 0 75.35 42.50 117.85
xi − µ -117.85 19.15 52.15
(xi − µ)2 13888.62 366.72 2719.62
(xi − µ)2 × P (X = xi) 2777.7 201.7 679.9 3659.3

The second total is our variance, V ar(X) = 3659.3. The standard
deviation is sd(X) =

√
3659.3 = $60.49
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Linear Combinations of Random Variables

So far, we’ve considered each variable individually, but sometimes we
may be more interested in a combination of variables.

For example, the amount of time a person spends commuting to work
each week may be broken down into daily commutes.

Section 3.4 August 6, 2019 63 / 63


	Section 3.2
	Section 3.3
	Section 3.4

