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Transforming Data

When data are very strongly skewed, we sometimes transform
them to make them easier to model.

For our purposes, data is easiest to model when it is

Mostly symmetric
Unimodal
”Bell-shaped”

We want to be able to use our mean and standard deviation
instead of our median and IQR!
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Transforming Data

What does it mean to ”transform” the data?

Essentially, we apply some mathematical function to our data in
order to rescale it.

Technically, we want transformations that are continuous and
invertible.

Fortunately, there are a number of standard transformations that
we use.
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Example: Transforming Data

A histogram of the populations of all US counties.

For perspective, Riverside County has 2.4 million people and
Los Angeles County has 10.2 million people!
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Example: Transforming Data

These data are very strongly skewed! Almost all of the counties have
populations between 0 and 1 million people, but a few have over 10
million.
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Example: Transforming Data

To transform the data we take log10(Population). The histogram of
the transformed data looks like this:
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Example: Transforming Data

Before and after transformation:

In histogram (b), it is much more reasonable to use the mean and
standard deviation to measure the center and spread of our data.
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Transformations

We may also apply

A square root transformation√
original variable

An inverse transformation

(original variable)−1
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Transformations

In general, transformations:

Let us see data structure differently.

Reduce skew.

Assist in modeling.

Straighten nonlinear relationships in scatterplots.
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Visualizing Geographic Data

Geographic data can be plotted using the data visualization
techniques we’ve already seen.

We might instead want to create an intensity plot.

These plots allow us to show higher and lower values of a variable
using colors on a map.

Intensity plots are good for seeing geographic trends.
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Mapping Data
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Categorical Data

In the previous section, we focused on numerical data. We now turn
our attention to categorical data.

This section includes more tools and language that we will use
throughout the course.
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Word Clouds

If we have text that we’re interested in, we can turn words into
categories. Here are the top seven words from the survey question
about slaying a dragon:

Word Frequency

sword 9
dragon 9
stab 6
kind 5
heart 4
fire 3
dont 3
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Word Clouds

Here are a few things I did before finding the top words:

Removed responses like ”N/A” and ”I don’t know”.

Removed low-information words like ”the” and ”and”.

Removed punctuation.

Converted all text to lowercase.

Reduced words to their roots - ”kindness” becomes ”kind” - to
group those words together.

Now we’re ready to create a word cloud out of the responses.
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Word Clouds
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Summary Tables

A basic summary table summarizes a categorical variable by showing
the frequency, or count, of each category.

homeownership Count

Rent 3858
Mortgage 4789
Own 1353

Total 10000

apptype Count

Individual 8505
Joint 1495

Total 10000

Note: homeownership refers to whether or not someone owns a home
and apptype indicates whether a loan application was made
individually or jointly.
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Bar Plots

A bar plot is a common way to visualize the information in a
summary table.
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Summary Tables: Proportions

We may occasionally prefer to see our data summarized by proportions
(see the fractional breakdown of our data).

homeownership Proportion

Rent 0.3858
Mortgage 0.4789
Own 0.1353

Total 1.0000

apptype Proportion

Individual 0.8505
Joint 0.1495

Total 1.0000
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Bar Plots

We can again use a bar plot to visualize this information.

This bar plot looks exactly the same as the one with frequencies! The
only difference is in the numbers along the vertical axis.
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Pie Charts

Pie charts show the same information as bar charts, but are more
difficult to discern details from.

They are good for infographics but are not well-suited to technical
writing.
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Contingency Tables

A contingency table is a table that summarizes two categorical
variables. It looks something like this:

homeownership

Rent Mortgage Own Total

apptype
Individual 3496 3839 1170 8505
Joint 362 950 183 1495
Total 3858 4789 1353 10000
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Contingency Tables

Contingency tables allow us to summarize two categorical variables
together by breaking them down into subcategories.

homeownership

Rent Mortgage Own Total

apptype
Individual 3496 3839 1170 8505
Joint 362 950 183 1495
Total 3858 4789 1353 10000
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Contingency Tables

Notice that the column of totals is the same as the summary table for
apptype and the row of totals has the same information as the
summary table for homeownership.

homeownership

Rent Mortgage Own Total

apptype
Individual 3496 3839 1170 8505
Joint 362 950 183 1495
Total 3858 4789 1353 10000
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Row and Column Proportions

We may also want to examine the fractional breakdown of our
contingency table data.

The row proportions are the row counts divided by the
row total.

The column proportions are the column counts divided by the
column total.

The overall proportions are the counts divided by the total
number of observations.

Section 2.2 July 31, 2019 24 / 66



Contingency Tables for Row Proportions

We can now convert our previous contingency table into a contingency
table for the row proportions:

homeownership

Rent Mortgage Own Total

apptype
Individual 0.411 0.451 0.138 1.000
Joint 0.242 0.635 0.122 1.000
Total 0.386 0.479 0.135 1.000

This breaks down each application type into home ownership status.
We would say that, among individual applications, 41.1% are renters.
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Contingency Tables for Row Proportions

homeownership

Rent Mortgage Own Total

apptype
Individual 0.411 0.451 0.138 1.000
Joint 0.242 0.635 0.122 1.000
Total 0.386 0.479 0.135 1.000

We can tell at a glance that this is for the row proportions because all
of the row totals are 1.

The rows are total breakdown of homeownership, so the bottom row of
totals is the same as the home ownership summary table with
proportions (see slide 15). They are not the additive total for the row
of proportions.
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Row and Column Proportions

The row proportions are the row counts divided by the row total.

The column proportions are the column counts divided
by the column total.

The overall proportions are the counts divided by the total
number of observations.
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Contingency Tables for Column Proportions

We can also convert our contingency table into a contingency table for
the column proportions:

homeownership

Rent Mortgage Own Total

apptype
Individual 0.906 0.802 0.865 0.851
Joint 0.094 0.198 0.135 0.150
Total 1.000 1.000 1.000 1.000

This breaks down each home ownership status into application types.
We would say that, among renters, 90.6% filled out an individual loan
application.
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Contingency Tables for Row Proportions

homeownership

Rent Mortgage Own Total

apptype
Individual 0.906 0.802 0.865 0.851
Joint 0.094 0.198 0.135 0.150
Total 1.000 1.000 1.000 1.000

We can tell at a glance that this is for the column proportions because
all of the column totals are 1.

The rows are the total breakdown of apptype, so the bottom row of
totals is the same as the application type ownership summary table
with proportions (see slide 15). They are not the additive total for the
column of proportions.
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Contingency Tables for Row Proportions

Rent Mortgage Own Total
Individual 0.906 0.802 0.865 0.851
Joint 0.094 0.198 0.135 0.150
Total 1.000 1.000 1.000 1.000

We can use these contingency tables to check for an association
between home ownership and loan type.

Notice that, among individual applicants, 90.5% rent, but only
80.2% have a mortgage.
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Contingency Tables for Row Proportions

Rent Mortgage Own Total
Individual 0.906 0.802 0.865 0.851
Joint 0.094 0.198 0.135 0.150
Total 1.000 1.000 1.000 1.000

If there is no association, the proportions will be (approximately)
the same across the row.

We say that loan types vary between different levels of home
ownership.

(Using the column proportions, we can also say that home
ownership status varies between levels of loan type.)
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Example: Student Survey

Let’s look at a contingency table for some of our survey data.

Year

Sophomore Junior Senior Other Total

Want
1 1 0 2 1 4
2 0 4 3 1 8
3 1 11 1 0 23
4 7 10 8 1 26
5 0 3 1 0 4
Total 9 28 25 3 65

Is there a relationship between year and desire to take this course?
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Example: Student Survey

It’s hard to tell! Let’s look at whether there is a change in want by
year (does want vary between levels of year).

Year

Sophomore Junior Senior Other Total

Want
1 0.11 0.00 0.08 0.33 0.06
2 0.00 0.14 0.12 0.33 0.12
3 0.11 0.39 0.44 0.00 0.35
4 0.78 0.36 0.32 0.33 0.40
5 0.00 0.11 0.04 0.00 0.06
Total 1.00 1.00 1.00 1.00 1.00

Is there a relationship between year and desire to take this course?
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Example: Student Survey

What if we looked at whether there is a change in year by want (does
year vary between levels of want)?

We should still see a relationship.

It makes sense to think about whether year affects your desire to
take this course.

However, it probably doesn’t make sense to think about whether
desire to take this course affects your year in school.

In this scenario, you’d have to have done something extreme like
taken a year off and fallen behind just because you really didn’t
want to take this course. Hopefully that’s not the case!
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Two-Variable Bar Plots

We can extend our bar plots to help visualize the information in a
contingency table by creating

Stacked bar plots.
Side-by-side bar plots.

A stacked bar plot takes our one-variable bar plot and breaks up
the bars to show a second variable.

A side-by-side bar plot takes our one-variable var plot and splits
each bar into two side-by-side bars.
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Side-By-Side Bar Plots

This side-by-side bar plot shows home ownership with loan application
type. Here, we’re breaking the data into six categories and giving each
one a bar.
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Stacked Bar Plots

This stacked bar plot shows home ownership broken down by loan
application type.

In both plots, it is easy to see that there are fewer people who own
their homes and fewer people applying for joint loans.
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Stacked Bar Plots: Frequencies

Same information, but standardized based on home ownership.

This is a visualization of the frequency-based contingency table for
loan types varying between levels of home ownership (slide 30).

Now we can see that the two variables are associated.
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Example: Student Survey Data

Let’s turn our contingency table into a stacked bar plot:

Here, we can see that most of you are juniors and seniors (and that
there’s a decent spread of how much you want to be here).
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Example: Student Survey Data

Let’s do the same with the proportion-based table:

Now we can quickly visualize the differences between the years.
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Mosaic Plots

(a) is a one-variable mosaic plot for homeownership.
(b) is a two-variable mosaic plot for homeownership and app type.
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Mosaic Plots

Mosaic plots look a lot like bar plots, but now the widths of the
bars depend on the group sizes.

For two-variable mosaic plots, the boxes from the one-variable
mosaic plot are divided up using the second variable.

Now, the heights of the boxes also depend on group sizes.

Thus, mosaic plots use area to represent the number of cases in
each category.

Section 2.2 July 31, 2019 42 / 66



Example: Student Survey Data

We can again see that there are more juniors & seniors in the class and
that sophomores are more likely to want to take this course beyond its
being a requirement.
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Comparing Numerical Data Across Groups

Our question of interest often involves comparing numerical data
across categories.

Whenever we are interested in comparing some numeric outcome
across treatment groups, this is our goal!

In general, these comparisons require that we make side-by-side or
stacked versions of our data visualization techniques for numerical
data.
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Side-By-Side Box Plots

Side-by-side box plots are standard tools for visualizing numerical
data broken down into categories.
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Example: Student Survey Data

Let’s look at how number of pets differs between year:

Juniors have a larger IQR and longer whiskers, suggesting that they
have a larger spread in number of pets.
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Hollow (or Stacked) Histograms

Hollow histograms are a little bit harder to read, but they allow us to
visualize what two distributions look like when layered on top of each
other.
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Case Study

Suppose we split the class into two groups by drawing a line down
the middle of the classroom.

Let p̂L be the proportion of students on the left side who own an
Apple product.

Let p̂R be the proportion of students on the right side who own an
Apple product.

Would you expect these two proportions to be exactly the same?
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Case Study

There’s no reason to believe that Apple users tend to sit on one
side of the room or another*, so we would expect the proportions
to be pretty similar.

But we probably wouldn’t expect these numbers to be exactly the
same.

This small expected variation is due to random chance.

* What assumption are we making about how these variables relate to
one another?
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Case Study: Malaria Vaccine

We consider a study on the malaria vaccine, PfSPZ.

Volunteer patients randomized into one of two experimental
groups.

14 patients received the vaccine.
6 patients recieved a placebo.

After 19 weeks, all patients are exposed to a (drug-sensitive) strain
of malaria.
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Case Study: Malaria Vaccine

These are the results:

outcome

Infection No Infection Total

treatment
Vaccine 5 9 14
Placebo 6 0 6
Total 11 9 20

This suggests infection rates of 35.7% for the treatment group and
100% for the control (placebo) group.
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Case Study: Malaria Vaccine

This study is an experiment, because treatment levels were
assigned by the researchers.

Therefore we can evaluate a causal relationship between the
vaccine and incidence of malaria.

It is not clear what level of blinding was used, but since they used
a placebo, it is probably blind.
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Strength of Evidence

We expect there to be some differences in our sample estimates,
even if the true values are exactly equal.

The sample size is small, so it’s not clear whether the vaccine
would be effective in the population at large.

It’s impossible to know whether the observed difference is due to
the vaccine’s efficacy or random chance.

It’s possible that such a large difference is normal (due to chance
alone) in such a small sample.

Note: In reality, clinical trials suggest that PfSPZ is effective, but storage and
transportation costs make it difficult to distribute to areas where malaria is
prevalent.
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Variability in the Data

This is a good reminder that our observed data may not perfectly
reflect the truth!

This is due to random noise, the variability between values due
to random chance.

Random noise and sample size are things we take into account
when statistically analyzing scientific claims.
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Competing Claims

Whenever we ask a research question, we always have two competing
claims, or hypotheses. These are labeled H0 (”H-nought”) and HA

(”H-A”).

H0: Independence model. The variables treatment and outcome are
independent. They have no relationship. Any observed difference
between the proportion of patients who developed an infection in the
two groups is due to chance.

HA: Alternative model. The variables are not independent. The
difference in infection rates is not due to chance. The vaccine affected
the rate of infection.
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Independence Model

If H0, the independence model, is true

The vaccine is irrelevant to infection status.

The 11 patients who developed an infection would have develop an
infection regardless of which group they were assigned to.

The 9 who did not develop an infection wouldn’t have developed
an infection regardless of which group they were assigned to.

The difference in infection rates was due to chance alone.
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Alternative Model

If HA, the alternative model, is true

Infection rates are influenced by whether or not a person received
the vaccine.
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Which Model is Correct?

We draw conclusions about which model is more likely to be true by
assessing how strong our evidence is

Do the data conflict with H0 strongly enough to conclude HA?

This depends on
1 How different the groups are.
2 How variable the groups are.
3 How much data we have.
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Simulations

We can start to think about the strength of our evidence using
simulations.

Our simulations will assume that our independence model is true.

We want to know if it is common to see differences as large as the
one we saw in our study.

If it is common, it is more likely that the difference was due to
random chance.

If it is uncommon, it is more likely that the vaccine is helpful in
preventing malaria.
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Simulations

Simulations sound complicated, but the idea here is just to assume
that the vaccine has no effect and then re-randomize the patients to
the treatment and control groups.

If the vaccine has no effect, we assume that the 11 patients who
developed an infection would have done so no matter what.

We also assume that the 9 who did not develop an infection would
have no infection no matter what.
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Simulations

We can approach this simulation like this:

1 Take 20 note cards to represent the 20 patients

2 Write each infection status on a note card (11 will say ”infection”;
9 will say ”no infection”).

3 Shuffle the note cards and then randomly pull out 14 for the
vaccine pile. Put the other 6 into the placebo pile.

4 Count up how many infections are in each pile.
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Simulations

Doing this once, we get

outcome

Infection No Infection Total

treatment
Vaccine 7 7 14
Placebo 4 2 6
Total 11 9 20

Here, there is an infection rate of 50% for the treatment group and
66.6% in the placebo group, a difference of 16.7%. This is much smaller
than in the actual study!
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Checking For Independence

The real power of simulations comes from repetition. Using R, I
repeated this simulation 10,000 times.

Histogram of the differences across 10,000 repetitions.
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Checking For Independence

In the actual study, the difference in infection rates was 64.3%.

In my simulations, the average difference was only 0.06%.

I found a difference as big as the one in the study only 33 times.

This means that, if the vaccine is not useful, a difference of 64.3%
happens by chance less than 1% of the time!

This suggests that we have pretty good information despite the
small sample size.
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Moving Forward

The concepts we’ve been talking about with our case study are what
we want to get at with this course!

Hypotheses

Testing claims (testing for independence)

Figuring out how uncertain we are about our results

Eventually, we will formalize these concepts and talk about how to test
our claims without simulations.
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A Note About R Code

I’ve been using a lot of code to write these slides!

I’ve added a new page to the course website that will contain links
to all of this R code.

This code will be heavily commented to make it easier to follow
and I will set it up so that you will not need to download any
additional data.

As always, learning R is completely optional, but the code is there
if you’re interested.
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